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1.1 Historical background 

 The study of fluid mechanics dates back to the time of ancient Greece. The first major 

investigation on fluid statics and buoyancy force was carried out by Greek mathematician and 

physicist Archimedes (287 B.C. – 212 B.C.) and results are written in the treatise On 

Floating Bodies. The laws of buoyancy given by Archimedes are popularly known as 

Archimedes Principle. From that onwards, applications and inventions of fluid mechanics 

flourish through numerous trial and error methods. Different mathematical theories regarding 

fluid mechanics have immensely contributed to the development of the subject. But 

advancement in the field of fluid mechanics was scarcely explored till the Middle Ages. In 

16
th

 century prominent Italian artist Leonardo da Vinci (1452-1519) and Dutch scientist 

Simon Stevin (1548-1617) conducted some simple experiments. Based on the contraction and 

expansion of air, Italian astronomer and physicist Galileo Galilei (1564-1642) made a simple 

thermometer. 

 Advancement in fluid mechanics accelerated in the 17
th

 century with Italian physicist 

Evangelista Torricelli (1608-1647) developed a relationship between the pressure and 

velocity of a fluid. French physicist Blaise Pascal (1623-1662) established laws of 

equilibrium of liquids in a most simple manner.  Irish chemist Robert Boyle (1627-1691) 

presented his law regarding pressure and volume of gas which is known as Boyle‟s law. 

French physicist Edme Mariotte (1620-1684) and Italian chemist Domenico Guglielmini 

(1655-1710) observed the velocity of fluid in a glass pipe and river respectively. English 

physicist Sir Isaac Newton (1643-1727) analyzed viscosity, fluid inertia, and resistance using 

his laws of fluids. 

 In the 18
th

 century, the most notable work on fluid mechanics was done by Swiss 

mathematician and physicist Daniel Bernoulli (1700-1782) and French physicist Jean le Rond 

d‟Alembert. In his classic Hydrodynamica, Bernoulli discussed the pressure and velocity of 

fluids. D‟Alembert applied the principle of equilibrium to the motion of fluids. In 1786, 

based on experiments, Pierre Louis Georges Dubuat (1734-1809) published his book 

Principles d’hydraulique which contains a gratifying theory related to fluid motion. 

 Rapid progress in fluid mechanics was observed in the 19
th

 century. German civil 

engineer Gotthilf Heinrich Ludwig Hagen (1797-1884) and French physicist Jean Leonard 

Marie Poiseuille (1797-1869) both researched laminar flow properties. In 1850, German 
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physicist Rudolph Clausius (1822-1888) brought a new revolution by giving the kinetic 

theory of gases. In 1877, French mathematician and physicist Joseph Boussinesq (1842-1929) 

described eddy viscosities in a turbulent flow. Irish scientist Osborne Reynolds (1842-1912) 

characterized between laminar and turbulent pipe flow while Irish hydraulic engineer Robert 

Manning (1816-1897) researched on open channel flow. 

 The first decade of the 20
th

 century added a new dimension to the field of fluid 

mechanics with the invention of boundary layer theory. On 8
th

 August, 1904 German fluid 

dynamicist and aerospace scientist Ludwig Prandtl (1875-1953) presented a revolutionary 

paper titled On the Motion of Fluids in Very Little Friction at the Third International 

Mathematics Congress at Heidelberg, Germany. This paper is about the boundary layer and 

its importance in streamlining and drag. Prandtl also developed a solution to Navier- Stokes 

equation. German physicist Paul Richard Heinrich Blasius (1883-1970) investigated the 

solution of the boundary layer equation for flow past a flat plate. German engineer Johann 

Nikuradse (1894-1979) and American professor Lewis Ferry Moody (1880-1953) researched 

the relationship between pipe flow, friction factor, and Reynolds number. 

1.2 General description of fluid 

 Application of external force deforms all materials. However, fluid is such a 

substance that deforms limitlessly under the action of shearing stress. Fluids are categorized 

into liquids and gases. The volume of fluid is reduced under compression. The contraction of 

volume in liquid is much less than that of gas. This is because intermolecular forces in the 

fluid particle are significantly stronger than in gaseous particles. As a result, liquid maintains 

its shape or volume. Gaseous particles move freely in air colliding with each other. 

Consequently, gas has no definite size and shape. So, for practical problems, liquids and 

gases are treated to be incompressible and compressible fluids respectively. 

 Fluid mechanics is concerned with the conditions under which a fluid is at rest or 

enduring in motion. Fluid mechanics can be subdivided into three main parts- fluid statics, 

fluid kinematics, and fluid dynamics. Fluid statics is associated with the conditions under 

which a fluid is at rest. The study of fluid in motion without considering the effect of external 

pressure is defined as fluid kinematics. It is only involved with the rotation, deformation, and 

translation of fluid elements. Fluid dynamics is concerned with the velocity, acceleration, and 

different forces including external pressure exerted by a fluid in motion. The two main 
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categories of fluid dynamics associated with the motion of liquids are hydrodynamics 

concerned with the movement of gases. 

 Fluid dynamics has comprehensive applications in various branches of science and 

engineering. The studies of large-scale flow on earth‟s atmosphere, oceanic waves and 

currents, turbulence, etc. are some geophysical applications of fluid dynamics. Technological 

and engineering applications include heat engine design, hydroelectric power plants, grinding 

and screwing of heavy machinery parts, design of canals and dams, different types of brakes 

(like hydraulic brake, anti-lock braking system (ABS), disc brake) rocket engines, oil 

pipelines, design of flood control system, design of wind turbine, hydraulic machines, design 

of flood control system, air conditioning and refrigeration system, etc. Applications of fluid 

dynamics in the human body are so huge that it is studied under a new branch called biofluid 

mechanics. It is concerned with the blood circulation in the human body, interaction between 

blood cells and vessel walls, blood pumps, heat valve prostheses, magnetic drug targeting, 

heat transfer and diffusion in tissues, etc. 

 Considering the importance of fluid dynamics in day- today life, researchers are now 

studying it as a multidisciplinary subject with other classical branches of science. For 

example, Electrohydrodynamics (EHD) deals with the motion of electrically charged fluids. 

Magnetohydrodynamics (MHD) is based on fluid dynamics and electromagnetic theory. 

Hydrology is associated with the movement, management, and distribution of water on earth 

and other planets. 

1.3 Bascic Terminologies 

1.3.1 Fluid Pressure:  

 When a fluid is kept in a container, it exerts a force at both normal and tangential 

directions at each point of the inner side of the container. The normal force acting on the 

inner side of the container is termed pressure. Simply, normal force per unit area exerted by 

the fluid at each point of the surface of contact is defined as fluid pressure. There are two 

main circumstances for the existence of fluid pressure- one is the open condition or open 

channel flow (for example, river, atmosphere) and the other is the closed condition or closed 

conduit (for example, gas pipelines, water pipelines). Mathematically pressure p at any point 

on the fluid is defined as  
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A dA




   

where A and p are the surface area and normal force acting on a fluid element 

respectively. 

 The S.I. unit of pressure is Pascal (Pa) or Newton/m
2
. 

1.3.2 Fluid Density 

 Fluid density, denoted by the symbol  is defined as mass per unit volume of the 

fluid. Mathematically, fluid density at any point of the fluid is defined as 

 
0

lim
V

m

V





  

where V is the volume around the fluid element and m is the mass of the element. 

 The S.I. unit of density is Kg/m
3
 

1.3.3 Fluid Temperature 

 The physical quantity that distinguishes a hot body from a cold body is termed 

temperature. It is proportional to the kinetic energy of molecules stored in a body. In a fluid, 

temperature suggests the random motion of the molecules. With decreasing temperature, the 

volume of most of the liquids and all the gases reduces. The temperature at which gas will not 

occupy any volume is called absolute zero temperature. At this temperature, the kinetic 

energy of gas molecules vanishes and hence no molecular movement is observed. 

 The S.I. unit of temperature is Kelvin (K). 

1.3.4 Fluid Viscosity 

 The resistive force that opposes the motion of the fluid is termed viscosity. This arises 

due to the shearing resistance in a fluid caused by inter-molecular friction exerted when one 

layer of fluid attempts to slide over another adjacent layer. As strong intermolecular forces 

produce a huge amount of friction, a fluid with high viscosity struggles to flow. Honey, 

Mercury, Glue, etc. are some common examples of this type of fluid. On the other hand, a 

fluid having low viscosity can easily flow. Water, air, milk, vegetable oil, etc. are fluids 

having low viscosity.  
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 Newton's law of viscosity states that the shear stress between two adjacent fluid layers 

is proportional to the velocity gradient between the two layers. Mathematically, it can be 

written as 

 
du

dy
   

where  is the shear (tangential) stress,  is a proportionality constant called the coefficient 

of viscosity or dynamic viscosity, and 
du

dy
is the velocity gradient. 

 Therefore, the dynamic viscosity  of a fluid can be defined as the tangential force 

required per unit area to overcome its internal molecular friction and maintain unit relative 

velocity between two fluid layers at a unit distance apart. However, in many practical and 

industrial applications, viscosity on the movement of flow is described by the ratio of 

dynamic viscosity  to fluid density  rather than  alone. This ratio is called kinematic 

viscosity and it is denoted by . Thus, mathematically, 

 





  

 Kinematic viscosity is utilized when both inertia and viscous forces are dominant 

whereas dynamic viscosity is utilized when only viscous force is dominant. Pressure has 

almost no effect on the dynamic viscosity of fluids unless an extreme case occurs. However, 

for gases, kinematic viscosity varies with pressure. Like dynamic viscosity, kinematic 

viscosity is independent of pressure for liquids. Ascending temperature diminishes dynamic 

viscosity for gases. However, dynamic viscosity for gases hikes with sing temperature.  

 The S.I. unit of dynamic viscosity is Pascal seconds (Pa.s) or Kg.m
-1

.s
-1

 and that of 

kinematic viscosity is m
2
/s. 

1.3.5 Compressible and Incompressible Fluids 

 A fluid is called compressible if it shows a considerable amount of change in density 

when pressure is applied. Gases exhibit variation in volume and density in presence of even 

small variations in temperature or pressure. This is because the volume of the gas is 

composed of a large amount of free space between the particles. When external pressure is 
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applied, the particles move close to one another and hence volume declines. So, gases are 

treated as compressible fluids. 

 On the other hand, the volume and density of fluid do not vary easily if external 

pressure is applied to it. The molecules or atoms of the liquids are more closely packed than 

that of gases. When the pressure is applied to liquid its density does not change to a 

substantial degree. As a result volume of liquids does not vary considerably when external 

pressure is applied to them. So, liquids are treated as incompressible fluids. 

 To distinguish a compressible fluid from an incompressible fluid analytically, the 

concept of Mach number is required. Mach number is the ratio of the velocity of fluid flow to 

the velocity of sound in that fluid. For compressible fluids, the Mach number is greater than 

0.3 and for an incompressible fluid, it is less than 0.3. 

1.3.6 Ideal and Real Fluids 

 An ideal fluid is inviscid and incompressible. This kind of fluid is only imaginary and 

has no existence in nature. Ideal fluids do not offer any shear resistance, i.e., they can flow 

smoothly. Real or practical fluids are those fluids that are compressible, viscous, and have 

surface tension. This type of fluid offers shear resistance. 

1.3.7 Newtonian and Non- Newtonian Fluids 

 Newtonian fluids obey Newton‟s law of viscosity. They possess constant viscosity 

and a zero shear rate at zero shear stress i.e., the shear rate is directly proportional to shear 

stress. This means the quotient of the shear stress and the shear rate is constant throughout the 

fluid. Water, air, gasoline, and alcohol are some common examples of Newtonian fluids. 

 Non- Newtonian fluids do not obey Newton‟s law of viscosity. They exhibit variable 

viscosity i.e., the viscosity of these fluids can change under the action of a force. They do not 

follow a linear relationship between shear stress and the rate of angular deformation. Glue, 

paint, and cosmetics are some well-known examples of Non- Newtonian fluids. 
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1.3.8 Laminar and Turbulent Flow 

 The movement of fluid particles along distinct paths or streamlines where no two 

paths intersect each other is called laminar flow. In this type of flow, the fluid particles flow 

in layers or laminar gliding smoothly over the adjacent layers. The flow of a highly viscous 

fluid through a pipe with a small diameter with low velocity is a good example of laminar 

flow. Laminar flow is also termed as viscous flow or streamline flow.      

 The movement of fluid particles in a zigzag way, i.e., the fluid particles do not follow 

non-intersecting paths is termed turbulent flow. The movement of fluid particles causes high 

energy loss in a turbulent flow. The speed of the fluid at a point continuously changes in both 

magnitude and direction. The flow of a fluid through a pipe with a large diameter with high 

velocity is a perfect example of turbulent flow.  

1.3.9 Steady and Unsteady Flow 

 In steady flow, the fluid properties like density, velocity, pressure, acceleration, etc. 

independent of time. In steady flow, the properties are functions of position only and they do 

not depend on time. If P denotes all the fluid properties, then for a steady flow, 

 0
P

t





 

 On the other hand, if the fluid properties depend on time, i.e., if they vary from time 

to time, then the flow is termed unsteady. For unsteady flow, 

 0
P

t





 

 When water flows out of a tap that has just been opened, the flow is unsteady initially, 

but with time the flow becomes steady. 

1.3.10 Uniform and Non- Uniform Flow 

 A flow is called uniform if the velocity at a given instant of time is the same in both 

magnitude and direction at all points in the flow. 
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 On the contrary, if the velocity changes from point to point in a flow at any given 

instant of time, the flow is termed as non-uniform. 

1.3.11 One, Two, and Three Dimensional Flow 

 A flow is termed as one dimensional if different flow parameters like velocity, 

temperature, pressure, etc. are functions of time and one space co-ordinate only. Assuming 

variation of velocity and pressure along the cross section to be negligible, a flow throws a 

pipe is a good example of a one- dimensional flow. 

 If all the flow parameters are functions of time and two space co-ordinates, then the 

flow is said to be two-dimensional. The flow between two infinite plates is a common 

example of two-dimensional flow. 

 A flow is labelled as three-dimensional if all the flow parameters are functions of time 

and all three space co- ordinates. An example of such kind is a flow in an open channel in 

which the width and the water depth are of the same order of magnitude. 

1.4 Heat Transfer 

 As a consequence of the second law of thermodynamics, heat will flow spontaneously 

from a hotter region to a cooler region without any external help. Thus, heat is a vector 

quantity and its flow is directed towards decreasing temperature, with a negative temperature 

gradient. In general, the transmission of heat or thermal energy from one region to another 

due to temperature differences is termed heat transfer. This process is spontaneous and 

irreversible until thermal equilibrium is reached.   

 There are numerous examples of heat transfer in the universe. The human body 

continuously ejects heat to its surroundings. The flow of air, the process of cooking, food 

processing, etc. are some common examples of heat transfer. The process of heat transfer 

plays a pivotal role in many technological and industrial practices. Some of them are 

processing of oil and gas, temperature control in die casting, design of I.C. engines, steam 

generators, molding of plastic, etc. 

 There are three modes of heat transfer, namely conduction, convection, and radiation. 

It should be noted that more than one mode of heat transfer can occur simultaneously. 
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1.4.1 Conduction 

 The conduction process, also termed thermal conduction, is the method of transfer of 

heat within parts of a material or between two substances that are in physical contact. This 

process occurs in solids as well as fluids. Conduction can occur in two ways- 

 By exchange of thermal energy from molecules at relatively higher temperatures to 

neighbouring molecules with lower temperatures due to the kinetic motion or direct impact of 

molecules. 

 By the movement of free (valance) electrons, occurring due to variance in 

concentrations of free electrons as in the case of liquid metals, electrolytes, and metallic 

liquids. The ability of metallic alloys to conduct varies directly with the concentration of free 

electrons within them. 

 As temperature difference is the driving potential for heat transfer, a linear 

relationship between the flow of heat and the temperature difference exists. In 1822, 

renowned French physicist and mathematician Jean- Baptiste Joseph Fourier (1768-1830), in 

his monumental work Theorie Analytique de la Chaleur (The Analytic Theory of Heat), 

proposed an experimental law. This law is termed Fourier‟s law of heat conduction and it 

states that the rate of heat conduction through a plane layer is directly proportional to the 

temperature gradient across the layer and the area of heat transfer but it is inversely 

proportional to the thickness of the layer. In mathematical form, this law can be expressed as 

 T

dT
Q K A

dx
   

 In the above equation, TK  is a proportionality constant known as the thermal 

conductivity, A is the area of heat transfer which is perpendicular to the direction of flow of 

heat, 
dT

dx
 is the temperature gradient. The negative sign indicates the flow of heat is along the 

positive direction of the X-axis and hence heat transfer is a positive quantity. Q  is defined as 

the heat flow per unit area per unit time across any surface (through which heat propagates) 

and is termed heat flux. Fourier's law of heat conduction is similar to Newton‟s law of 

viscosity for laminar flow.  
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 Thermal conductivity is a physical property of a material and is defined as the 

capacity of the material to conduct heat. Its S.I. unit is Watts per meter Kelvin  1 1Wm K  . 

1.4.2 Convection 

 The process of energy transfer between a bounding solid surface and the adjacent 

fluid (liquid or gas) when they are at different temperatures and there exists relative motion 

between them is termed convection. It is the mode of heat transfer by the bulk movement of 

fluid molecules. Initially, heat transfer between the object and the fluid takes place through 

conduction, but bulk heat transfer happens due to the motion of the fluid. Convective heat 

transfer depends on fluid motion. The faster the fluid movement, the greater is the heat 

transfer by convection. When bulk movement is absent, heat transfer between a solid surface 

and the adjacent fluid is by conduction (random molecular motion of surface molecules) only. 

There are three types of convection - free, forced, and mixed. 

 When temperature difference occurs, thermal expansion takes place. The hotter layers 

of fluid become less dense and the colder layers are denser. This generates buoyancy force 

and it propels hotter i.e., less dense parts away. Consequently, the cooler, i.e., the less dense 

part rushes to replace it. This induces the movement of fluid. The process of heat transfer in 

this manner is called free or natural convection. Sea breezes, oceanic breezes, and land 

breezes are perfect examples of free convection. Applications of free convection can be 

observed in the cooling of electrical equipment, solar collectors, nuclear reactors thermal 

hydraulics, etc. 

 When fluid flow is induced by some external agencies like pumps, fans, etc., forced 

convection takes place. In forced convective flow, the driving force is external to the fluid 

and the flow velocities are high. The cooling systems of a car, water geysers, electric fans, 

etc., are some common examples of forced convection. Forced convection is used in many 

technological phenomena such as the flow within a shell and tube heat exchanger, the flow of 

fluids over flat surfaces, the flow of water through nuclear heating elements, the flow of a 

cryogenic liquid coolant in certain digital computers, etc. 

 When free and forced convection are both of the same orders of magnitude, the 

convection is called mixed. For instance, if air flows over a vertical surface at a relatively low 

velocity but the surface is heated at a considerably high rate, both free and forced convection 
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are expected to occur. Mixed convection takes place in various industrial and technological 

applications such as electronic devices cooled by fans, cooling of nuclear reactors heat 

exchangers placed in a low-velocity environment, etc. 

 In 1701, noted scientist Sir Isaac Newton observed that the rate of heat loss from a 

body is directly proportional to the temperature between the body and the surroundings. 

This law is known as Newton‟s law of cooling. Mathematically, this law can be stated as   

  s sQ hA T T   

where sA is the surface area through which convection takes place, Here h is the convective 

heat transfer coefficient, As is the surface area through which convection takes place, sT is the 

surface temperature, T is the temperature of the fluid far away from the surface, and Q  is the 

convective heat flux. 

 The S.I. unit of convective heat transfer coefficient is Wm
-2

K
-1

. 

1.4.3 Radiation 

 The process of emission or transmission of energy by matter in the form of 

electromagnetic waves or photons is termed as radiation. Conduction or convection requires a 

material medium for the energy to transmit. However, radiation does not necessarily require a 

material medium to transport energy. Hence, radiation is the most powerful mode of heat 

transfer. Heating up of the earth's surface by the rays of the sun is a perfect example of 

radiation. 

 The two main theories that explain the heat transfer process by radiation are- wave 

theory and quantum theory. 

1.4.3.1 Wave Theory 

 In his treatise A Dynamical Theory of the Electromagnetic Field, Scottish scientist 

James Clerk Maxwell (1831-1879) first proposed that if an electrically charged particle moves 

under acceleration, alternating electrical and magnetic fields are produced and transmitted. These 

fields are transmitted in the form of waves. These waves are called electromagnetic waves or 
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electromagnetic radiation. The radiation in form of electromagnetic waves declines the internal 

energy of the emitting body unless the heat is generated within that body equivalent to the 

decrease in internal energy. However, this theory does not explain the photoelectric effect 

and blackbody radiation. 

 

1.4.3.2 Quantum Theory 

 

 Renowned German physicist Max Planck (1858-1947) postulated quantum theory. 

According to this theory, molecules and atoms emit or absorb energy only in discrete 

quantities. The smallest amount of energy that can be emitted or absorbed in the form of 

electromagnetic radiation is called a quantum. The energy of the radiation absorbed or 

emitted is directly proportional to the frequency of the radiation. Mathematically, it can be 

written as  

 E h  

where E  is the energy of radiation,  is the frequency of the radiation and h is a 

proportionality constant known as Planck‟s constant. The experimental value of Planck‟s 

constant is 
346.626 10 .J s  

 

 The form of radiation emitted by bodies due to their temperature is termed thermal 

radiation. It is different from other types of electromagnetic radiation such as x-rays, 

microwaves, gamma rays, radio waves, etc. as these are not related to temperature. Thermal 

radiation depends on various factors like surface area, spectral emissivity, surface reflexivity, 

temperature, geometrical configuration, etc. All materials which are at a temperature above 

absolute zero naturally emit thermal radiation at various intensities. Hence every solid and 

fluid emits, absorbs or transmits radiation spontaneously to varying degrees. Radiation is 

considered to be a surface phenomenon for solids whereas it is considered to be a volumetric 

phenomenon for fluids. 

 The highest rate of radiation that can be emitted from a surface is given by Stephen- 

Boltzmann law- 

 4

max s sQ A T  
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where sA  is the surface area, sT is the temperature, and  is the Stephen- Boltzmann constant 

whose value is 
8 2 45.67 10 Wm K   . The body that emits radiation at the rate maxQ  known as a 

blackbody and radiation emitted by such a body is called blackbody radiation. However, 

radiation emitted by all real bodies is less than blackbodies at the same temperature. The 

amount of radiation emitted by real bodies is defined as  

 4

emit s sQ AT  

here  is the emissivity of the surface.  0 1   

Similarly, radiation absorbed on a real surface is defined as   

 4

absorbed s sQ AT  

here  is the absorptivity of the surface.  0 1   

 For blackbody, both emissivity and absorptivity are of magnitude unity. Hence a 

blackbody is a perfect emitter as well as a perfect absorber. The quantity net emit absorbedQ Q Q   

gives the net radiative heat transfer of the surface. The surface loses energy if 0netQ   and 

gains energy if 0netQ  . Radiative heat transfer between a surface and its surroundings 

occurs simultaneously with conduction or convection. Though radiation is considered to be 

insignificant relative to forced convection, it is very significant relative to conduction and 

free convection.  

1.5 Mass Transfer 

 The movement of a species from a higher concentration region to a lower 

concentration region is called mass transfer. The process of mass transfer requires two 

regions at distinct species concentrations and the process continues until an equilibrium state 

is established. Mass transfer occurs in solids, liquids as well as in gases. Unlike heat transfer, 

the mass transfer phenomenon has several driving forces like concentration difference (for 

liquids), mole difference (for gases and liquids), pressure difference (for gases), etc. 

Evaporation of water from river to the atmosphere, distillation of alcohol, purification of 
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blood in the kidneys and liver, etc. are some common examples of mass transfer. Many 

industrial and engineering activities like adsorption such as scrubbers or stripping, separation 

of chemical components in distillation columns, absorbing activated carbon beds, absorption, 

liquid extraction, drying, leaching, etc. encounter mass transfer. There are two main modes of 

mass transfer- mass diffusion and mass convection. 

1.5.1 Mass Diffusion 

 Mass diffusion occurs due to macroscopic random molecular motion or the laminar 

flow of fluids. Like the conduction process of heat transfer, diffusive mass transfer originates 

from molecular activity. Mass diffusion can be observed in solids, liquids, and gases. 

However, mass transfer is strongly influenced by molecular spacing diffusion and as a result, 

it occurs more expeditiously in gases than in liquids and solids and more rapidly in liquids 

than in solids. In 1855, renowned German scientist Adolf Eugen Fick (1829-1901) put 

forward a rate equation for mass diffusion stating that the mass flux of the diffused substance 

and the concentration gradient are responsible for mass transfer. This law is known as Fick‟s 

law of diffusion. Suppose, in a binary mixture of two species A and B, in which composition 

varies in the X direction and molecular diffusion occurs within the fluid due to the non-

uniformity of composition until equilibrium is established. According to Fick‟s law of 

diffusion, the mass flux of an element per unit area is proportional to the concentration 

gradient. Mathematically, it can be written as, 

 
x

A
A AB

dC
J D

dx
   

where 
xAJ , is the molal flux of species A in x direction, AdC

dx
 is the molal concentration 

gradient of component A in the x-direction, ABD  is a constant of proportionality known as 

mass diffusivity (or the diffusion coefficient) of component A  diffusing through component 

B . The molal concentration of component A is expressed by the quantity AC  and is defined 

as the number of molecules of component A per unit volume of the mixture. The negative 

sign in Fick‟s law indicates that mass diffusion takes place in the direction of decreasing 

concentration. Similarly, we can find the rate equation for the molal flux of species B. It 

should be noted that for a binary mixture of species A and B, the mass diffusivity of A with 

respect to B is equal to the mass diffusivity of B with respect to A i.e., AB BAD D .  
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 The SI unit of mass diffusivity is m
2
/s. 

1.5.2 Mass Convection 

 Mass transfer by convection takes place due to the bulk movement of fluid. It is 

concerned with the transfer of mass between two relatively immiscible moving fluids or 

between a moving fluid and a surface. Convective mass transfer arises if the bulk velocity is 

appreciable or the constituents in a binary mixture are moving with significant relative 

velocities. Likewise to convective heat transfer, mass transfer by convection can be 

subdivided into free or natural and forced mass convection. The convective mass transfer 

phenomenon is analogous to the convective heat transfer process. 

 The difference in species concentration causes variation in densities in a fluid 

mixture. This variation produces a buoyancy force. The movement of mass due to buoyancy 

force is termed free convective mass transfer. The evaporation of alcohol is a perfect example 

of free convective mass transfer.  

 The process of movement of mass developing with the help of external sources is 

called forced convective mass transfer. An example of forced convective mass transfer is the 

evaporation of water from an ocean when air blows over it.  

1.6 Chemical Reaction 

 A chemical reaction is a process in which a substance is transformed chemically 

under the influence of some energy such as light, heat, electricity, etc. This process can be 

spontaneous or non-spontaneous. It involves the exchange of electrons in the breaking and 

formation of chemical bonds, and consequently, chemical substances changes, and some 

energy is absorbed or released in the process. A chemical reaction can be segregated as 

homogeneous and heterogeneous. If the chemical reaction appears evenly in a single phase 

i.e., either gas, solid, or liquids, or is entirely dependent on the nature of the interactions of 

the reacting substances, then it is termed as homogeneous chemical reaction. An example of 

such kind of reaction is a mixture of oxygen and common LPG gas that produces flame under 

heat energy. On the other hand, in a heterogeneous chemical reaction, one or more chemical 

reactants experience chemical change at an interface. Some common examples of such kind 

of reaction include corrosion of iron, the reaction of solid metals with acids, etc. 
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 The concentration of the reactants plays a pivotal role in a chemical reaction. The rate 

of a chemical reaction is defined as the variation in concentration over time. The number that 

characterizes the relationship between the rate of a chemical reaction and the concentrations 

of the reactants is termed as the order of that chemical reaction. The chemical reactions where 

the rate is independent of the concentration of reactant, i.e., the change in concentration of 

reactant does not affect the speed of the reaction is called a zeroth-order chemical reaction. 

The rate equation of zeroth order chemical reaction can be written as  
0

0 0rate K A K   , 

where 0K  is the zeroth order homogeneous rate constant and [A] is the concentration of one 

of the reactants. If the rate depends linearly on the concentration of only one reactant, then it 

is known as a first-order chemical reaction.  The rate equation of first-order chemical reaction 

can be stated as    
1

1 1rate K A K A   where 1K  is the first-order homogeneous rate 

constant. Similarly, if in a reaction whose rate depends on the concentration of one reactant 

raised to the second power or on the concentration of two different reactants, each raised to 

the first power is called second – order reaction chemical reaction. Mathematically, the rate 

equation for second-order chemical reaction can be written as  
2

2rate K A or 

  2rate K A B  where 2K  is the second-order rate constant and  A and  B are the 

concentration of the reactants. 

1.7 Gray and Non-Gray Gases 

The optimal thickness of a material is defined mathematically as 

0τ loge

I

I

 
  

 
  , 

where 0I  denotes the original intensity of the beam of light and I  denotes the intensity of 

light after passing through the material. A gas is termed as optically thin if τ<<1  and it is 

called optically thick if τ>>1 . Optical thickness is a dimensionless quantity and it measures 

the capacity of a particular material. 

 Also, a gas is said to be gray if its optical thickness τ  does not depend on the wave 

number of electromagnetic radiation. Otherwise, the gas is said to be non-gray. All 

commonly found atmospheric gases are non-gray in general. For optically thick non- gray 

gas, the Rosseland approximation method is used to describe the heat flux due to radiation 
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that appears in the energy equation whereas, in the case of optically thin non-gray gas, 

Cogley‟s model is used for the same. 

1.8 Porous Medium 

 A medium or material that contains holes or voids through which fluids can easily 

flow is termed as a porous medium. The skeletal part of the material is called pore space or 

frame or matrix. Generally, pore space is constituted of solids. Many natural substances such 

as rocks, soils, zeolites, biological tissues (such as wood, cork, bones, etc.), and artificial 

materials such as foams, cement, ceramics, etc. are some examples of porous medium. 

Numerous scientists and researchers work extensively in the fields involving porous medium 

due to their diverse practical applications. Some of these fields are soil mechanics, rock 

mechanics, petroleum engineering, geo-mechanics, bioremediation, hydrogeology, filtration, 

geoscience, acoustics, constructing engineering, material sciences, physical sciences, life 

sciences, etc. In his book Ankituing Zun Naturlehre, Leonhard Euler was the first to introduce 

the concept of a porous medium.  

 However, the basic law governing fluid flow through porous media was given by 

French civil engineer Henry Philibert Gaspard Darcy (1803-1858) in the year 1856. This law 

is known as Darcy‟s law. He formulated this law based on an experiment with natural sand, 

the proportion of water volume flowing through the sand, and the loss of pressure. This law is 

valid only for laminar flow through fine-grained sediments.  To formulate the law, Darcy 

used Navier- Stokes equation. The law is analogous to Ohm‟s law of electrical networks, 

Fick‟s law of mass diffusion, and Fourier‟s law of heat conduction. Though porous media is 

non-homogeneous, for experimental analysis, Darcy considered it to be homogeneous. 

Hence, this law is valid for a situation where the porous material is already homogeneous and 

already saturated with the fluid. Mathematically, this can be expressed as- 

 
k

q p


    

where, q   is the filter velocity or volume flow rate or filter velocity,   is the coefficient of 

viscosity, p  is the pressure, and k is in general a second-order tensor called the permeability 

of the porous media. Permeability characterizes fluid motion through a porous medium. 
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 To elucidate the transitional flow between the boundaries, noted researcher H.C. 

Brickman extended Darcy‟s law by adding a term known as Brickman‟s term. However, this 

correction term is only applicable for those flows where the medium is highly porous. Due to 

its complexity in use, such a term is generally omitted. Including the Brickman term, 

mathematically Brickman equation can be expressed as- 

  2

1

k
q p q


      

where  
1  is called as effective dynamic viscosity for the Brickman model and it is defined as 

1
porosity


  . In the case of laminar viscous flow, a first approximation gives result as  

1   Incorporating with the above two equations, the Navier-Stokes equation for the flow 

of an incompressible viscous fluid through a porous medium can be stated as- 

   2.
q

q q p q q F
t k


  

 
         

 

where F  is the external force acting on the fluid per unit mass. 

1.9 Thermal Diffusion Effect or Soret Effect 

 When both thermal and solutal convection occurs simultaneously in a fluid mixture, 

then the relation between driving potential and flux becomes more complicated. The mass 

flux is generated by both the temperature gradient and concentration gradient. The effect of 

mass flux under temperature gradient is termed as the Soret effect or thermal diffusion effect. 

This effect was first observed by German physician Carl Ludwig in 1859. But, the first 

experimental work was done by Swiss chemist Charles Soret in 1879. He conducted the 

experiment using solutions containing Sodium Chloride (NaCl) and Potassium Nitrate 

(KNO3) in pipes with heated or cooled ends. He observed that when two parts of a liquid are 

maintained at different temperatures, then the solute of the liquid has a tendency to move 

from a warmer region to colder region. Consequently, the smaller light molecules get 

separated from large heavy molecules under a temperature gradient. In Soret effect, there 

exists a difference in concentration of components in the region of high and low 

temperatures. This concentration difference in turn contributes in the occurrence of diffusion. 
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The aspect of mass flux under a large temperature gradient fascinates several theoretical and 

experimental researchers. Renowned Dutch physical chemist Jacobus Henricus van‟t Hoff 

(1852-1911) was the first to publish theoretical work on Soret effect in 1887. He developed 

an interrelationship between gases and dilutes solutions and predicted that the solute would 

distribute itself so that its osmotic pressure remains constant throughout the system. Later, 

this effect was elaborated by British mathematician and geophysicist Sydney Chapman 

(1888-1970). This effect has many applications in different chemical and physical processes, 

isotope separation, etc. 

1.10 Diffusion Thermo Effect or Dufour Effect 

 If two non-reacting and chemically different fluids are allowed to diffuse into each 

other, initially at the same temperature, then the system produces a heat flux. The effect of 

heat flux owing to a significant composition gradient is termed as the Dufour effect or 

diffusion thermo effect. It is the inverse phenomenon of the thermal diffusion effect. 

Renowned Swiss scientist L. Dufour discovered this effect in 1873. The Dufour effect is 

typically disregarded in heat and mass transport processes as they are of a lower order of 

magnitude compared to the effects described by Fick's or Fourier's laws. This effect is usually 

negligible for binary liquid mixtures. However, the diffusion thermo effect is found to be of 

considerable magnitude in the case of medium molecular weight (like N2, air) so it cannot be 

neglected as emphasized by Eckert and Drake (1972). Application of diffusion thermo effect 

can be found in many areas, especially in chemical reactors and CVD problems. 

1.11 Magnetohydrodynamics (MHD) 

 The branch of physics that deals with the interaction of a magnetic field with 

electrically conducting fluid is termed as Magnetohydrodynamics (MHD). “Magneto” means 

electromagnetic fields, “hydro" means fluids and "dynamics” denotes the forces and the laws 

of motion. So basically, MHD is the mathematical model for low-frequency interaction 

between electrically conducting fluids and electromagnetic fields. Saltwater, liquid metals, 

electrolytes, and plasma are some common examples of electrically conducting fluids. (A gas 

is electrically insulating at ordinary temperature. However, at a very high temperature (6000 

K-10000 K), almost every element of the gas gets ionized and it becomes highly electrically 

conducting. Such state of a gas is known as plasma). Both fluid Mechanics and MHD are part 

of continuum mechanics, and often they produce closely related results. Both of them are 
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fundamental to many spellbinding areas of astrophysics and geophysics. They have a wide 

variety of applications in the human body, many engineering and technological problems as 

well as numerous cosmic events. Magnetohydrodynamics is also called Magneto gas 

dynamics and Magneto-fluid mechanics. It is the only dynamics related to electrically 

conducting fluids. With the introduction of the Lorentz force, the governing laws of MHD 

become different from conventional laws of hydrodynamics. Due to its complexity, many 

researchers devoted themselves to studying different consequences of MHD. The principle of 

MHD is based on the following two phenomenons- 

i. An induced magnetic field associated with the current which perturbs the original 

magnetic field. 

ii. An electromagnetic force originating from the interaction of current and field 

which perturbs the original fluid motion. 

 Thus, MHD appears from one of the mutual interactions between the electromagnetic 

field and fluid velocity field. The motion affects the magnetic field by carrying the magnetic 

field lines partially (depending upon the electrical conductivity of the fluid) along with it and 

the magnetic field affects the motion by producing a mechanical force namely the Lorentz 

force. 

 The equations which describe MHD flow are a combination of Maxwell's equations 

of electromagnetism and Navier-Stokes equations of fluid dynamics. As MHD is a continuum 

theory, it cannot be treated like a kinetic phenomenon, i.e. those in which the existence of 

discrete particles or of non-thermal velocity distribution is important. Maxwell's equations 

describe the properties of electric and magnetic fields and connect them to their sources, 

charge density, and current density. There are four equations of electromagnetism 

emphasized by Maxwell and they are as follows: 

i. 
0

E



   (Gauss‟s law of electrostatics) 

ii. 0B   (Gauss‟s law of magnetism) 

iii. 
B

E
t


  


 (Faraday‟s law of electromagnetic induction) 
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iv. 0 0 0

E
B J

t
  


  


 (Ampere‟s law with Maxwell‟s correction) 

where B , E , J , 0 ,   , t , 0 denote the magnetic induction vector, electric field density 

vector, current density vector, magnetic permeability of the medium, density, time and 

permittivity of the medium respectively. 

 It is assumed that the medium is not significantly polarisable or magnetisable, which 

is pertinent for a highly conducting medium where currents are produced due to the 

movement of free electrons. Gauss‟s law of electrostatics relates the total electric charge 

contained within a closed surface (called Gaussian surface) to the surrounding electric field. 

Mathematically, this law depicts how charges affect the divergence of an electrical field 

(electric field lines diverge from positive charges toward negative charges). It also states that 

the total electric flux through a Gaussian surface is independent of the shape and size of that 

surface. Gauss‟s law of magnetism states that the total magnetic flux through a Gaussian 

Surface is zero. This is due to the fact that in the real world, magnetic charges exist in pairs 

(referred to as dipoles) and they create opposite magnetic field divergences which cancel out 

each other. In theory, a single magnetic charge is termed as a magnetic monopole. As a 

consequence of Gauss‟s law for magnetism, it is clear that magnetic monopoles (i.e. free 

magnetic charges) do not exist in nature. Faraday‟s law of electromagnetic induction 

interprets the reason behind the electric field being produced by a varying magnetic field. The 

principles of several electric generators are based on this law. For instance, the force of water 

falling from a hydroelectric dam spins a huge magnet, and the varying magnetic field induces 

an electric field that drives electricity through the power grid. Based on a series of 

experiments, noted British scientist Michael Faraday (1791-1867) formulated this law in 

1831. Ampere‟s law with Maxwell‟s correction states that magnetic fields can be generated in 

two ways- one by electrical current (this was the original law given by French physicist 

Andre Ampere (1775-1836)) and the other by time-varying electric fields. The phenomenon 

of changing electric field induce magnetic field can be described from the modern concept of 

displacement current 0

E

t





which was introduced to maintain the solenoid nature of 

Ampere‟s law in a vacuum capacitor circuit. Here, 0  denotes the permittivity of free space. 

This modern displacement current concept has the same mathematical form as Maxwell‟s 
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original displacement current
E

t




. Maxwell‟s original displacement current applies to 

polarization current in a dielectric medium and it sits adjacent to the modern displacement 

current in Ampere‟s law. The modern extension to displacement current applies in the pure 

vacuum. This asserts that a changing electric field can induce a magnetic field, and vice-

versa. From this modern interpretation, it is understood that, even if no electric charges or 

currents are present, it is possible to have stable, self-perpetuating waves of oscillating 

electric and magnetic fields, with each field driving the other. Ampere's law emphasizes the 

fact that a changing electric field induces a magnetic field. Maxwell's equations are generally 

applied to macroscopic averages of the fields, and it is only in this averaged sense that one 

can define quantities such as the permittivity and permeability of a material/medium. The 

fields in Maxwell's equations are generated by charges and currents. 

 There are two types of MHD- ideal and resistive. The simplest form of 

magnetohydrodynamics is termed as ideal MHD. In an ideal MHD, resistivity is assumed to 

be very little and hence it is a perfect conductor. In an ideal MHD, magnetic field lines 

surround or bounds the fluid as stated in Lenz‟s law. The equation of the ideal MHD consists 

of the continuity equation, the Cauchy momentum equation, Ampere‟s law avoiding current 

displacement and a temperature evolution equation. Fine-scale magnetic turbulence or current 

sheets introduce small spatial scales into the system over which ideal MHD demolishes. This 

causes magnetic diffusion to occur very rapidly and resistive MHD takes place. 

 In an MHD heat transfer problem, the term containing Joule heating turns up in the 

energy equation and the Lorentz force comes into action as stated earlier. In a system with 

forced convection, the energy equation is detached from Navier-Stokes equation and 

Maxwell‟s equations electromagnetic equations. However, in a natural convection system, 

the Navier-Stokes equation breaches the energy equation. To efficiently design a 

magnetohydrodynamic device, it is important to study thoroughly information regarding 

electromagnetic, velocity and temperature fields.  

 There are several applications of the MHD principle in various branches of science 

and technology such as in engineering, geophysics, astrophysics, aeronautics, medical 

science, etc. Engineering applications include electromagnetic casting, liquid metal cooling 

of nuclear fission reactors, creation of MHD propulsion force, welding, design of heat 

exchangers, magnetic filtration and separation, refining and solidification, design of 
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laboratory devices, brakes, dispersion and granulation of metals, metallurgy, etc. Scientists 

use MHD to study numerous geophysical phenomena out of which earthquakes and the 

earth's magnetic field are preeminent. MHD is used to describe different astrophysical events 

such as solar wind, solar flares, astrophysical plasma, etc. The method of magnetic drug 

targeting which is generally used in cancer treatment is based on the MHD principle. 

1.12 Boundary Layer Theory 

 In 1903, American aviation scientist brothers Orville Wright and Wilbur Wright 

invented and flew the first practical airplane. However, with the passing of time, it became 

more and more arduous in determining the lift and drag forces on airplanes. Aviation 

scientists need to calculate both pressure and shear-stress distributions and integrate them 

over the surface of the airfoil to measure these forces. With the help of various 

approximations, the distribution of pressure can be appraised. But, the calculation of the 

shear-stress distribution requires the inclusion of internal friction and the consideration of 

viscous flow and is thus needed to tackle the Navier-Stokes equations for viscous flow. 

Navier-Stokes equations become weak nonlinear due to the presence of the convective term “

q  ” ( q  and  are velocity of fluid and gradient operator respectively). To date, it is not 

possible to obtain a complete analytical solution of Navier-Stokes equations. For very small 

Reynolds number i.e., for high viscous fluid flow, where inertial forces can be neglected 

completely, some exact solutions of the Navier-Stokes equations can be calculated. However, 

if the fluid flow is characterized by a large Reynolds number, i.e., when either viscosity is 

small or when viscous forces and inertia forces are of the same order of magnitude in a 

significant portion of the flow system, the effect of viscosity of the fluid cannot be neglected. 

It is therefore required to retain both inertial and viscous terms in Navier-Stokes equations 

and consequently, the theory of non-viscous fluid dynamics fails to explain the flow of such 

fluids neighboring a solid boundary placed in the fluid itself. To overcome these limitations, 

German scientist Ludwig Prandtl proposed boundary layer theory for a fluid flow concerning 

small viscosity or large Reynolds number. His approximations for boundary layer simplify 

Navier Stokes equations so that it becomes solvable keeping both inertial and viscous forces. 

Brief discussions on various types of boundary layers involved with real fluid flow are given 

below: 
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1.12.1 Velocity Boundary Layer 

 Let us consider a two-dimensional laminar flow of a viscous, incompressible, and 

electrically conducting Newtonian fluid past a semi-infinite vertical flat plate at zero 

incidences. We also assume that this fluid possesses a very small viscosity, i.e., the Reynolds 

number of the fluid is large. As the fluid is real and Newtonian, so it does not slip or slide 

over the plate, but sticks to it and as a result, the adherent fluid particles will attain zero 

velocity on the plate, ( 0u  , at the plate). The flow configuration is given below 

 

 

 

 

  

 

 The velocity of the fluid increases gradually and attains the free stream (or full 

stream) velocity asymptotically at a sizable distance from the plate. The transition from zero 

velocity at the plate surface to the free stream velocity U  generates a velocity gradient 

within a very thin fluid layer in contact with the plate and this layer is termed as the velocity 

boundary layer. The velocity boundary layer is also called the momentum boundary layer as 

it changes in momentum within the layer. Practically, the velocity boundary layer is 

considered to be the region where the fluid velocity is parallel to the surface of the plate and 

it is less than 99% of the free stream velocity. The quantity  is referred as the thickness of 

the velocity boundary layer. As the distance from the surface increases, the boundary layer 

thickness   hikes. Although there is no such physical delimitation between the boundary 

layer and the mainstream, a fictional line having almost zero velocity gradients separates the 

mainstream from the boundary layer. This imaginary line is termed as the edge of the 

boundary layer. Ludwig Prandtl first proposed the idea of dividing the fluid into two regions. 

For the convenience of mathematical analysis, the flow region is divided into two sub-

regions-   

Y 

 

 

Free stream region 

 

Velocity (momentum) 

boundary layer region 

Plate surface 

X O 

 

Figure 1.1: Velocity boundary layer 
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 A very slim layer (called boundary layer) contiguous to the plate surface in which the 

effect of fluid viscosity is prominent and the viscous and the inertial forces have 

magnitudes of the same order. A velocity gradient with a very large value near the 

wall exists in presence of viscous drag as 
u

y




 (as emphasized by Newton) even 

when fluid viscosity is quite small.  

 In the region outside of the boundary layer, the velocity gradient 
u

y




 is so small that it 

can be neglected and accordingly viscous forces may be ignored completely. The 

inertial forces dominate this region and here the theory of ideal fluid offers a very 

good approximation. 

 Whenever there is fluid flow over a surface, the velocity boundary layer develops and 

it acts as a basic concept behind convective transport problems. In some situations where the 

fluid passes the leading edge of the plate, both viscous forces and velocity gradients are of 

higher order in magnitude. Then the fluid moves in the laminar regime and the boundary 

layer thus developed is very thin. This type of boundary layer is termed as the laminar 

boundary layer. However, as the fluid travels further downstream along the plate, the flow of 

the fluid gets retarded under the influence of viscous shear and accordingly, the boundary 

layer becomes thick. This results in a gradual decrease of the velocity gradient. The thickness 

of the boundary layer forces the particles to move out of the smooth layers and thus the 

laminar motion becomes unstable. As a result, the flow becomes turbulent. This type of 

boundary layer is labelled as a turbulent boundary layer. 

1.12.2 Thermal Boundary Layer 

 When there is a difference between solid surface temperature and free stream 

temperature exists, the thermal boundary layer develops. Let us consider a non-conducting 

isothermal flat plate placed horizontally along X –axis. The plate temperature is kept uniform 

at value wT  except the leading edge, where the temperature is equal to the outside free 

temperature and is measured as T . Let us consider wT T  , i.e., the plate is „hot‟. At the 

plate's surface temperature, the fluid particles coming into contact with the plate surface 

achieve thermal equilibrium.  Subsequently, these particles swap energy with those in the 

adjacent fluid layers, and hence thermal gradients establish in the fluid. The region of the 
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fluid in which temperature gradients take place is termed as the thermal boundary layer. The 

thickness of this layer is denoted by and its thickness t . With increasing Y- distance from the 

plate surface, the fluid temperature inside the boundary layer tends to the free stream 

temperature, i.e.,  , ,T x y t T . As the distance from the leading edge increases (i.e, with 

increasing values of x), the effects of heat transfer permeate further into the free stream and in 

the expansion of thermal boundary layer thickness t can be defined as the value of y for 

which 0.99w

w

T T

T T





.  

 The thickness of the velocity boundary layer  and the thickness of the thermal 

boundary layer t  are connected by Prandtl number of the fluid. For fluids having Pr =1, it is 

noticed that t  . For those fluids having  Pr 1 , it is observed that t   and on the 

othe hand, for fluids having Pr 1 , it is noticed that t  . 

 

 

  

 

 

 

 Due to the existence of temperature gradient in the fluid, variation in fluid density 

take place.  Let   and   be the densities of fluid in the thermal boundary layer and in free-

stream respectively. The fluid particles in the immediate vicinity of the hot plate become 

warmer (and hence lighter) than the surrounding colder (and hence heavier) fluid particles 

and this result in a local change of density. Under the assumption of no-slip conditions, heat 

transfer takes place only by heat conduction. Heat flux 
*q at any distance x from the leading 

edge may be determined by applying Fourier‟s law of heat conduction to the fluid at the plate 

(i.e., at y=0) as 
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Figure 1.2: Thermal boundary layer 
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where κ is the thermal conductivity of the fluid medium. Also from Newton‟s law of cooling , 

we get  *

T wq h T T  , where Th  is the local heat transfer coefficient. Combining Fourier‟s 

law with newton‟s law of cooling, we obtain  
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 It should be noted that both wT  and T  are taken to be constant, and hence  wT T  is 

also a constant. Also thickness of thermal boundary layer t  hikes with increasing x, and 

hence the magnitude of the temperature gradient 
0y

T

y


 
 
 

must decrease with increasing x. 

1.12.3 Concentration Boundary Layer 

 When there is exists a difference between the surface concentration and free stream 

concentration of the species, a concentration boundary layer establishes. The concept of 

concentration boundary layer is analogous to that of thermal boundary layer.  

 

 

  

 

 

 

 Let us consider a flat plate lying along the X -axis and the fluid is viscous Newtonian, 

incompressible, electrically conducting and it flows over the plate. It is also assumed that the 

fluid medium composed of a single chemical species. Let concentration of species in the fluid 
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Figure 1.3: Concentration boundary layer 
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at the surface is uniform and equal to wC  and that in the free-stream is also uniform and equal 

to C . For wC C , the chemical species present in the fluid diffuses from the surface of the 

plate into the fluid and a concentration boundary layer will be formed. This diffusion is based 

on the fact that mass flows from a region of higher concentration to a region of lower 

concentration. The effects of mass transfer penetrate further into the free-stream resulting in 

the growth of concentration boundary layer thickness c  which is defined as the value of y 

for which 0.99w

w

C C

C C




   

 Due to the difference of species concentration in the fluid, variation in fluid density 

take place.  Let   and   be the densities of fluid in the concentration boundary layer and in 

the free-stream respectively. Under the assumption of no-slip conditions, there is no fluid 

motion at the plate surface. Consequently, the mass transfer takes place only by diffusion.  

Mass flux wM at any distance x from the leading edge, may be determined by applying Fick‟s 

law of mass diffusion to the fluid at the plate (i.e., at y=0) as
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where MD  is the mass diffusivity of the fluid medium. Again as analogy to Newton‟s law of 

cooling, we get  M M wD h T T  , where Mh  is the local mass transfer coefficient. 

Combining both, we obtain  
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1.13 Basic Equations 

 Fundamental equations that govern the convective flow of an electrically conducting, 

incompressible, viscous, chemically reacting and radiating fluid in a porous medium in 

presence of a magnetic field having constant mass diffusivity and thermal diffusivity taking 

account of both thermal diffusion and diffusion thermo effects are 
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Continuity equation: 

 0q    

Gauss law of magnetism: 

 0B    

Ohm‟s law for moving conductor: 

  J E q B  
 

Faraday‟s law of electromagnetic induction: 

 
B

E
t


  


                                                                                                                             

Kirchhoff‟s first law: 

 0J   

                                                                                                                                     

Ampere‟s law:  

 
eB J          

Magnetic induction equation:  

  2B
B q B

t


   


                                                                                                                                                                                                                           

  

Momentum equation: 

   2

*

q q
q q F p J B q

t K


 
 

         
 
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Energy equation: 

  
2

2 2M T
p r

S

D KT J
C q T T Q q C

t C


  



 
           

  

Species continuity equation: 

   2 2M T
M c

M

D KC
q C D C T R

t T


      


  

Equation of state as per Boussinesq approximation: 

    1 T T C C     
        

where 

q   denotes fluid velocity vector 

B   denotes the  magnetic flux density 

   denotes electrical conductivity 

E   denotes electrical field 

J   denotes the current density 

e  denotes magnetic permeability 

  denotes magnetic diffusivity 

  denotes fluid density 

F  denotes external force per unit volume  

p  denotes pressure 

  denotes coefficient of viscosity 

*K denotes permeability of the medium 

pC  denotes specific heat at constant pressure 
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T   denotes fluid temperature 

   denotes thermal conductivity 

  denotes viscous dissipation of energy per unit volume 

Q  denotes heat source/sink 

rq  denotes radiation heat flux vector 

MD denotes mass diffusivity 

sC  denotes concentration susceptibility 

C  denotes molar species concentration 

MT  denotes mean fluid temperature 

CR  denotes rate of molar production of species per unit mass by chemical reaction 

   denotes volumetric coefficient of thermal expansion 

   denotes volumetric coefficient of solutal expansion  

1.14 Boundary Conditions 

 The boundary conditions of a flow of an incompressible viscous electrically 

conducting fluid through a porous medium in the presence of a transverse magnetic field are:  

i. The fluid does not slip at the boundary.  

ii. 0T  or wT T  or 
0y

T

y


 
 
 

is constant. 

iii. 0C  or wC C  or 
0y

C

y


 
 
 

is constant. 

iv. T T  at a large distance from the boundary (i.e., far away from the plate).  

v. C C at a large distance from the boundary ( i.e., far away from the plate ). 
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1.15 Dimensions of some some important physical quantities 

Fundamental Quantity Dimension 

Mass M 

Length L 

Time T 

Temperature K 

Electric current A 

Amount of substance mol 

 

Derived Quantity Dimension 

Magnetic flux density M
1
L

0
T

-2
A

-1
 

Specific heat at constant pressure M
0
L

2
T

-2
K

-1
 

Chemical molecular mass diffusivity M
0
L

2
T

-1
 

Pressure M
1
L

1
T

-2
 

Permeability M
0
L

2
T

0
 

Molar species concentration M
0
L

-3
T

0
mol

1
 

Acceleration due to gravity M
0
L

1
T

-2
 

Velocity M
0
L

1
T

-1
 

Convective rate of mass transfer per 

unit area (Mass flux) 

M
0
L

-2
T

-1
mol

1
 

Convective rate of heat transfer per unit 

area (Heat flux) 

M
1
L

0
T

-3
K

0
 

Viscosity M
1
L

-1
T

-1
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Kinematic Viscosity M
0
L

2
T

-1
 

Volumetric coefficient of thermal 

expansion  

M
0
L

0
T

0
K

-1
 

Volumetric coefficient of thermal 

expansion  

M
0
L

3
T

0
mol

-1
 

Thermal diffusivity M
0
L

2
T

-1
K

0
 

Density M
1
L

-3
T

0
 

Shear stress  M
1
L

-1
T

-2
 

Thermal conductivity  M
1
L

1
T

-3
K

-1
 

Electrical conductivity  M
1
L

-3
T

3
A

2
 

 

1.16 Dimensional Analysis and Non- Dimensional Quantities 

 A physical equation is nothing but the relationship between more than one physical 

quantity. For any equation expressing a physical relationship between quantities to be correct, 

it must be dimensionally homogeneous and numerically equivalent. By dimensional 

homogeneity, we mean that every term in an equation when reduced to fundamental 

dimensions must contain identical powers of each dimension. A dimensionally homogeneous 

equation can be applied to all systems of units. Dimensional analysis is the mathematical 

technique of obtaining the equations that govern certain natural or physical unknown 

phenomenon by balancing the fundamental dimensions such as, mass, length, time and 

temperature. Every physical phenomenon can be expressed by equations giving a relationship 

between dimensional and non – dimensional quantities. By incorporating dimensional 

variables to non – dimensional parameters, dimensional analysis helps us to determine a 

systematic arrangement of the variables present in the physical relationship. This analysis 

uses the dimensions of pertinent variables affecting the phenomenon and it is based on the 

principle of dimensional homogeneity. Dimensional analysis has the utmost importance in 

analyzing fluid flow problems. This method can be applied to all types of heat and mass flow 

problems as well as to many other problems of thermodynamics and fluid mechanics. 
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 The equation produced by dimensional analysis also contains some non – dimensional 

numbers. Using this method, the dimensionless parameters are found without knowing the 

governing equations. Instead, the pertinent variables are collected and combined to get the 

maximum number of independent non – dimensional parameters. The complete set of 

pertinent variables must be known and no irrelevant variables can be introduced, else ways, 

the determinative set of dimensionless parameters may be meaningless. These non – 

dimensional numbers are very significant in numerous engineering phenomenons, as it 

empowers the researchers to analyze the behaviour of problems of the same type provided the 

linear dimensions are geometrically similar. There are many non – dimensional parameters 

associated with different flow configurations. Some of them are discussed below: 

1.16.1 Reynolds Number 

 Reynolds number (Re) is a non- dimensional quantity that is used to predict similar 

flow patterns in different-size fluid flow situations. The concept of this number was initiated 

by Irish physicist George Gabriel Stokes (1819-1903) in 1851. However, this number was 

popularized by another Irish fluid dynamist Osborne Reynolds (1842-1912) by examining its 

behavior. Thus in his honor, the number is named after him. Reynolds number is the ratio of 

inertia force to viscous force. Mathematically, it is defined as- 

 Re
UL UL

 
   

where ,   and  are the density , dynamic viscosity and kinematic viscosity of the fluid 

respectively and U is the characteristic velocity and L is the characteristic length. 

 From the definition, it is observed that for large Reynolds numbers, inertia forces are 

dominant while viscous forces are more significant in the case of small Reynolds numbers. 

That is, the higher value of Re, the greater will be the relative contribution of the inertia 

effect; and the smaller value of Re, the greater will be the relative magnitude of the viscous 

stresses. Reynolds number is also used to predict the changeover from laminar flow to 

turbulent flow. In the case of laminar flow, the Reynolds number is less than 2300, whereas, 

for turbulent flow, the Reynolds number exceeds 4000. Reynolds number lying between 2300 

and 4000 indicates a transition of fluid flow from laminar to turbulent. Reynolds number is 

also used as an important criterion of kinematic and dynamic similarities in forced convection 

heat transfer.  
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1.16.2 Prandtl Number 

 For a given fluid flow, the Prandtl number (Pr) is the measure of the relative 

effectiveness of momentum and thermal energy by diffusion. This number is used to control 

the relationship between the velocity and temperature distribution of the fluid. It is named 

after german physicist Ludwig Prandtl. Mathematically, it can be written as   

Pr
pC 

 
    

where   is the dynamic viscosity,  is the kinematic viscosity, κ is the thermal conductivity, 

pC  is the specific heat at constant pressure, and    is the thermal diffusivity of the medium. 

Thermal diffusivity estimates the rate of propagation of heat through the medium.   

 Hence for gases with Pr 1 , the transfer of momentum and energy by the diffusion 

process are comparable. For oils with Pr 1 , the momentum diffusion is much greater than 

the energy diffusion; whereas in liquids with  Pr 1  and it indicates that the momentum 

diffusion rate is very slow than that of energy diffusion. Thus, the Prandtl number is a 

connecting link between the velocity field and temperature field and its value strongly 

influences the relative growth of velocity and thermal boundary layers. 

1.16.3 Magnetic Prandtl Number 

 The ratio of momentum diffusivity to magnetic diffusivity in a fluid flow is termed as 

the Magnetic Prandtl number (Pm). This dimensionless number has the utmost importance 

when we consider the effect of the induced magnetic field in a hydromagnetic flow. 

Mathematically, it is defined as  

 Pm





 

where  is the kinematic viscosity and  is the magnetic diffusivity. 

1.16.4 Schmidt Number 

 The ratio of momentum diffusivity to mass diffusivity in a fluid flow is termed as 

Schmidt number (Sc). It was named after German engineer Ernst Heinrich Wilhelm Schmidt 

(1892-1975). Mathematically it is defined as 
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M

Sc
D


  

where  MD is the mass diffusivity of the fluid and   is the kinematic viscosity of the fluid. 

 Thus Schmidt number is used to measure the relative effectiveness of momentum and 

mass transport by diffusion in a fluid medium, for a given fluid flow consisting of convective 

mass transfer. Apparently, Schmidt number manages the relationship between the velocity 

and the molar species concentration profile for the fluid flow. It distinguishes convective 

mass transfer in the same manner as the Prandtl number characterizes convective heat 

transfer. 

1.16.5 Thermal Grashof Number 

 The ratio of thermal buoyancy force to the viscous force acting on a fluid flow is 

termed as Thermal Grashof number (Gr). It was named after German engineer Franz Grashof 

(1826 - 1893). Mathematically, the thermal Grashof number is defined as 

 
 3gL T

Gr





  

where β is the volumetric coefficient of thermal expansion, g is the acceleration due to 

gravity, L is the characteristic length,  is the kinematic viscosity and ∆T is some suitable 

reference temperature difference .  

 Thermal Grashof number bears great importance in heat transfer by natural 

convection where buoyancy force is the only driving force. In free convection, a transition 

from laminar to turbulent flow can be indicated by assigning critical values to the thermal 

Grashof number together with the Reynolds number (Re) as follows-  

 The combined effects of free and forced convection must be considered if 
2

1
Re

Gr
 .  

 Forced convection is negligible if 
2

1
Re

Gr
. 

 Free convection is negligible if 
2

1
Re

Gr
.  

 Here, volumetric coefficient of thermal expansion (β) is a thermodynamic property of 

the fluid that provides a measure of the amount by which the density changes in response to a 
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change in temperature at constant pressure. Density gradients originating from these 

temperature differences are solely responsible for free convective heat transfer. 

1.16.6 Solutal Grashof Number 

 The ratio of solutal buoyancy force to the viscous force acting on a fluid flow is 

termed as the Solutal Grashof number (Gm). Mathematically, it is defined as- 

 
 3gL C

Gm





  

where   is the volumetric coefficient for solutal expansion , g is the acceleration due to 

gravity, L is the characteristic length,  is the kinematic viscosity and ∆C is some suitable 

reference molar species concentration difference .  

 Solutal Grashof number bears great importance in free convection flows involving 

mass transfer where buoyancy force is the only driving force. Here, the volumetric coefficient 

of solutal expansion (  ) is a thermodynamic property of the fluid that provides a measure of 

the amount by which the density changes due to a variation of species concentration at 

constant pressure. Density gradients occurring from these concentration differences initiate 

free convective heat transfer. 

1.16.7 Magnetic Parameter 

 The ratio of electromagnetic forces to inertial forces is termed as the magnetic 

parameter. This number is also called the Stuart number or magnetic interaction parameter. 

Mathematically, it is defined as  

 
2

0B L
M

U




  

where   is the electrical conductivity of the fluid medium, 0B  is an applied magnetic field 

component, ρ is the fluid density, L is the characteristic length and U is the characteristic 

velocity. Depending on the particular flow problem and other dimensionless substitutions, the 

choice of M may be made conveniently. 
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 In some hydromagnetic flow problems, we encounter another non-dimensional 

quantity called the Hartmann number (Ha). It is nothing but the square root of the product of 

the magnetic parameter with Reynolds number (Re). Mathematically, it is defined as- 

 0.ReHa M B L



    

1.16.8 Soret Number 

 Soret number (Sr) is a non-dimensional number which is proportional to the quotient 

of the temperature gradient to the concentration gradient. Mathematically, it is defined as- 

 
 TD T

Sr
C





 

where  is kinematic viscosity, TD  is molar thermal diffusivity and ∆T and C  are some 

suitable reference temperature gradient and concentration gradient respectively. 

1.16.9 Dufour Number 

 Dufour number (Sr) is a dimensionless number that is proportional to the quotient of 

the concentration gradient to the temperature gradient. Mathematically, it is defined as- 

 
 

 
M T

S P

D K C
Du

C C T





 

where  is kinematic viscosity, MD  is molar mass diffusivity, sC  denotes concentration 

susceptibility, 
pC  denotes specific heat at constant pressure and ∆T and C  are some 

suitable reference temperature gradient and concentration gradient respectively. 

1.17 Laplace Transform Technique 

 Laplace transform technique is a special type of integral transform technique.  French 

Mathematician Marquis Pierre-Simon Laplace (1749-1827) initiated this technique. However, 

this technique was methodically extended by the British mathematician and physicist Oliver 

Heaviside (1850-1925), to simplify the solution of various types of differential equations that 

govern physical phenomena. This method is frequently used by electric engineers to attain 

solutions to various electronic circuit problems. Applications of this technique can be 
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observed in fields related to flow and transport phenomena (Fluid Mechanics, 

Thermodynamics, etc.), wave propagation and acoustics, Geophysics, Celestial Mechanics 

etc. This transform technique is widely used in problems dealing with impulsively started 

flow. This method is also applicable for flow problems consisting of small Reynolds number, 

(i.e., for slow motion or creeping motion). The solutions obtained by using the Laplace 

transform technique are generally exact or of closed form. Therefore it does not require 

stability analysis for checking of validation.  

1.17.1 Definition of Laplace Transform: 

 Suppose,  F t is a function of t for t>0. Then, the Laplace transformation of  F t , 

denoted by   L F t  or  f s  is defined as  

       
0

stL F t f s e F t dt



  
 

1.17.2 Some Important Properties of Laplace Transform 

i. First shifting or translation property 

If     L F t f s , then     atL e F t f s a   

ii. Second shifting or translation property 

If     L F t f s and  
  ,

0,

F t a t a
G t

t a

 
 


, then     asL G t e f s  

iii. Change of scale property 

If     L F t f s , then   
1 s

L F at f
a a

 
  

 
 

iv. Laplace transform of derivatives 

If     L F t f s , then  

      0L F t sf s F    and         2 0 0L F t s f s sF F     

v. Division by t  

If     L F t f s , then 
 

 
0

F t
L f u du

t

 
 

 
  
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1.17.3 Definition of inverse Laplace transform: 

 If the Laplace transform of a function   L F t is  f s , i.e.,     L F t f s , then 

 F t  is called the inverse Laplace transform of  f s  and symbolically, it is written as 

    1F t L f s . Here, 1L is called the inverse Laplace transform operator. 

1.17.4 Some Important Properties of Inverse Laplace Transform 

i. First shifting or translation property 

If     1L f s F t  , then     1 atL f s a e F t    

ii. Second shifting or translation property 

If     1L f s F t  , then   
 1

,

0,

as
F t a t a

L e f s
t a

 
 

 


 

iii. Change of scale property 

If     1L f s F t  , then   1 1 t
L f as F

a a

  
  

 
 

iv. Division by s  

If     1L f s F t  , then 
 

 1

0

tf s
L F u du

s


 

 
 

  

v. Inverse Laplace transform of derivatives 

If     1L f s F t  , then 
          1 1 1

n
nn n

n

d
L f s L f s t F t

ds

   
   

 
 

vi. The convolution property 

If     1L f s F t  and     1L g s G t  , then  

        1

0

t

L f s g s F u G t u du    

1.17.5 Heaviside’s Unit Step Function, Error Function, and Complementary Error 

Function 

Heaviside‟s unit step function is defined by 

  1

1

1

1,

0,

t t
H t t

t t


  


 . 
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The error function is defined as  

 
2

0

2
t

uerf t e du


   . 

The complementary error function is defined as  

   
2 2

0

2 2
1 1

t

u u

t

erfc t erf t e du e du
 



        . 

1.17.6 Some Properties of Error Function and Complementary Error Function 

i.  
2

0erf  


 

ii.  
2

0erfc  


 

iii.  0 0erf   

iv.  0 1erfc    

v.     0erf x erf x     

vi.     2erfc x erfc x    

vii.      2erfc x erfc x erf x      

viii.  
2

2 ze
erfc z



  


 

ix.  
2

2 ze
erf z



 


  

x.    
21

4 zerfc z erfc z e


      

1.17.7 Bar Function 

Let  1 2 3, , ,......., , ,kf x x x x y t be an arbitrary real-valued function of the variables

1 2 3, , ,......., , ,kx x x x y t . Then, the bar function of  1 2 3, , ,......., , ,kf x x x x y t is denoted by 

 1 2 3, , ,......., , ,kf x x x x y t and is defined as 

      1 2 3 1 2 3 1 1, , ,......., , , , , ,......., , ,k kf x x x x y t f x x x x y t t H t t    
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where  1H t t is the Heaviside‟s unit step function defined earlier. 

1.17.8 Properties of Bar Function 

i. f f f    

ii.  f g f g      , where   ,   are constants and f , g are arbitrary real-

valued functions. 

1.18 Review of Relevant Literature 

(a) MHD Convective Flows Past Flat Plates and Boundary Layer Theory: 

 The introductory work in the field of magnetohydrodynamics (MHD) was made by 

Faraday (1832), Maxwell (1864), Hertz (1884, 1888, 1962), Ampere, Coulomb, Gauss and 

and Lorentz (1952). But it was Hannes Alfven (1942), whose pioneering contribution to the 

field of MHD earned him Nobel Prize for physics in 1970. MHD is in present form due to 

remarkable contributions by many researchers like Cowling (1976), Shercliff (1965), Roberts 

(1967), Pai (1962), Hughes and Young (1966), Sutton and Sherman (1965),Ferraro and 

Plumpton (1966), Lehnert (1952), Creamer and Pai (1973), etc. 

 The study of convective magnetohydrodynamic flow over or cooled or heated plates 

become one of the fundamental problems of research owing to its enormous practical 

applications. Several researchers have investigated MHD free convective flows of viscous 

incompressible fluids past a flat plate under different physical and geometrical conditions. 

Several authors contributed to it out of which Glauert (1956), Greenspan and Carrier (1959), 

Meksyn (1962), Davies (1963), Tan and Wang (1968), Pop (1967,1969), Sattar and Alam 

(1994), Das (1970), Gulab and Mishra (1977), Afzal (1972), Soundalgekar (1969,1970,1973, 

1975, 1979), Revankar (1983), Devi and Nagaraj (1984), Devi et al. (1988), Elbashleshy 

(1997), Raptis and Perdikis (2006), Raptis and Singh (1983), Singh and Chand (2000), 

Acharya et al. (2000), Alam et al. (2006), Das et al. (2008), Afify (2009), Ahmed and Sarmah 

(2009), Ahmed and Dutta (2014), Gundagani et al. (2013), etc. are worth mentioning. 

 Famous mathematician and aerodynamicist James Lighthill (1950, 1954) initiated the 

studies related to the effects of external unsteady fluctuations for two-dimensional time 

dependent flows. It should be noted that the flow along a very thin flat plate is the simplest 

example of application of the boundary layer equations. After the initiation of Boundary layer 
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theory by Prandtl (1904), his doctoral scholar Blasius (1908) extensively investigated about 

this theory. After that several researchers made significant contributions to this field. Some of 

them are Lighthill (1963), Langlois (1964), Schlichting (1968), Sherman (1990), Young 

(1989), Veldman (1976), Wiedemann and Gersten (1984), Schlichting and Gersten (2004), 

Ingham(1978) etc. 

(b) MHD Heat and Mass Transfer Flow with or without Radiation, Chemical 

Reaction, Heat Absorption/ Generation and Induced Magnetic Field 

The study of incompressible and convective flows involving heat and mass transfer 

have become subject of great enthusiasm to many researchers due to their applications in 

many branches of physical science, chemical science, engineering and technology, 

Geophysics, Astrophysics etc. Fourier (1822) formulated the law of heat conduction while the 

law of mass diffusion was given by Fick (1855). Significant works in the field of heat and 

mass transfer were done by  Nusselt (1915,1931), Glasstone et al. (1941), Brinkman 

(1947a,1947b), Jakob (1949), de Groot (1951), McAdams (1954), Hirschfedler et al. (1954), 

Crank (1957), Knudsen and Katz (1958), Bird (1960),  Rohsenow and Choi (1961), Romig 

(1961), Grober et al. (1961), Spalding (1963), Boelter et al. (1965), Luikov and Mikhailov 

(1965), Bird et al. (1966), Reid and Sherwood (1966), Treybal (1968), Welty et al. (1969), 

Patankar and Spalding (1970), Gebhart (1971), Turner (1973), Weltey (1974), Skelland 

(1974), Kays (1975), Sherwood et al. (1975), Ozisik (1977), Jaluria (1980), Thomas (1980), 

Vedhanayagam et al. (1980), Incropera and Dewitt (1981), Kaviany (1995), Kafoussias and 

Williams (1995), Camargo et al.(1996), Harries and Ingham (1997), Streeter et al. (1998),  

Baehr and Stephan (1998), Mills (1999),Wilkinson (2000), Schlichting and Gersten (2004), 

Choudhary and Jain (2007), Parida et al. (2011), Gurram et al. (2018), Poddar et al. (2021) 

etc. 

Chemical reaction effect draws attention of numerous researchers to work in this field 

due to its enormous practical significance in many industrial, technological and natural 

processes. Some researchers who have considered the case chemical reaction in MHD flow 

problems are Devi and Kandaswamy (2000), Alam et al. (2006), Ibrahim et al. (2008), Swain 

et al. (2017), Aboeldahab and Azzam (2006), Seddeek et al. (2007), Rajaiah et al. (2015), 

Sehra et al. (2021), Nayak et al. (2014) etc. 

 Radiative convective flows can be observed in many environmental and industrial 

phenomenons. This type of flow takes pivotal role in space technology and high temperature 

processes. It is also used in polymer processing industry. Influencing by the importance of 
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applications, many researchers have carried out model research on free convection in many 

hydrodynamic and magnetohydrodynamic flow problems with thermal radiation effect under 

different physical and geometrical circumstances. Some of them are Muthucumaraswamy and 

Kumar (2004), Seth et al. (2011), Seth and Sarkar (2015), Raptis (2017), Das (2011), 

Manivannan et al. (2009), Eswaramoorthi et al. (2015), Ali et al. (2021), Choudhary et al. 

(2015), Kumar and Kumar (2017), Abdullah et al. (2019) etc. 

 Effects of heat absorption/ generation carry great importance in many chemical 

processes as well as in renewable energy systems. Chamka (2004), Seth et al. (2015), 

Olajuwon and Oahimire (2014), Turkyilmazoglu (2019), Reddy and Makinde (2022), Reddy 

et al. (2023) etc. are some authors who extensively studied heat absorption/ generation effect 

in different MHD flow models. 

 In order to simplify the mathematical analysis of a flow problem, many researchers 

neglect the effect of induced magnetic field. However, in various physical situations where 

the intensity of the imposed magnetic field is very high, it is necessary to consider this effect 

to validate the mathematical model. Some authors who studied this effect on different MHD 

flow models are Denno and Fouad (1972), Singh and Singh (2000), Ghosh et al. (2010), Jha 

and Aina (2018), Goud et al. (2021), Suneetha et al. (2021), Ahmed (2023) etc. 

(c) Flows Through Porous Media:  

The study of flow through porous media is a subject of great importance. Movement 

of water and oil inside the earth, filtering of water using sand or other porous material, 

movement of blood through cells etc. are some examples of this type of flow. Its applications 

can be observed is many processes related to chemistry and chemical engineering such as 

chromatography, adsorption, filtration, absorption, flow in packed columns, reactor 

engineering, ion exchange, and so on. The investigations of flow problems through porous 

media are based on Darcy‟s experimental law (1856). Later, this law was modified by 

Brinkman (1947a, 1947b) and Wooding (1957) and it is used by several investigators to study 

convective flows through porous media. Significant research regarding flows through porous 

media were also done by Terill and Shrestha (1965a,1965b), Pop and Ingham 

(1969a,1969b,1969c,1969d), Ahmadi and Manvi (1971), Bear (1972), Yamanoto and 

Iwamura (1976), Bejan (1978), Raptis et al. (1981a,1981b), Megahed (1984), Qin and Kaloni 

(1992), Singh et al. (1993), Tobbal and Bennacer(1998), Jain and Gupta (2005), Xu et 
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al.(2005), Zueco (2008),  Xie et al.(2012), Nield and Bejan (2017), Wu and Xu (2022), Sahoo 

et al. (2022), Joshna et al. (2022) etc. 

(d) Flows with Thermal Diffusion and Diffusion Thermo Effects: 

 In combined heat and mass transfer processes, density difference in the fluid mixture 

works as the driving force. However, this variation can occur due to both temperature 

gradient as well as concentration gradient. The mass flux initiated by a temperature gradient 

is called as Soret effect or thermal diffusion effect. Though this effect was theoretically 

investigated by C. Ludwing in 1859, the first experimental work on this effect was performed 

by Charles Soret in 1879. On the other hand, the energy flux caused by concentration 

differences is termed as Dufour effect or diffusion-thermo effect. L. Dufour was the first to 

observe this effect in 1873. These two effects have great application in many chemical and 

industrial processes. Eckert and Drake (1972) made significant investigation on these effects. 

Realizing the importance of these effects on fluid flows, comprehensive analysis was done by 

Alam and Rahman (2005), Sharma (2005), Ferdows et al. (2008),  Ferdows and Chen (2009), 

Cheng C. Y. (2009,2011,2012a,2012b,2012c), Murthy and Narayana (2010), Olanrewaju and 

Makinde (2011), Makinde (2011), El-Kabeir (2011), El-Kabeir et al. (2011), Zaib and Shafie 

(2014), Vedavathi et al.(2015), Mahdy and Ahmed (2015), Sharma, P.K. (2015), Yabo et al. 

(2016), Khan et al. (2016), Zhao et al. (2016),  Niranjan et al. (2017), Sarma and Ahmed        

( 2022a, 2022b) etc.  
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2.1 Introduction 

MHD is a branch of physics, which is concerned with the motion of electrically 

conducting fluids in presence of magnetic field. The study of the interaction of magnetic field 

and the fluid velocity of conducting fluid falls under the purview of MHD. MHD principles 

find it‟s applications in Astrophysics, missile technology, space science cosmology, medical 

science etc. The scopes of applications of convection problems pertaining to electrically 

conducting fluid in presence of magnetic field have received much attention in recent years. 

Alfven (1942), Cowling (1957), Shercliff (1965), Ferraro and Plumpton (1966) and Crammer 

and Pai (1973) are the authors whose contributions lead MHD to take its present form.  

           The change in fluid temperature as well as species concentration results in a density 

variation in fluid mixture, which in turn produces buoyancy force that acts on the fluid. The 

flow caused merely due to buoyancy force is termed as natural or free convective flow. The 

process of heat transfer or mass transfer in this type of flow is called natural convection or 

free convection.  

           Radiation is also a mode of heat transfer through electromagnetic waves. Convective 

flows with thermal radiation occur in several industrial and environment processes. Due to 

importance of applications of thermal radiation in different heat and mass transfer problems, 

a large number of authors have carried out model studies on free convection in different 

hydrodynamic and hydro magnetic flows taking into account the thermal radiation effect, 

under various physical and geometrical conditions. Mbeledogu et al. (2007) studied unsteady 

free convection flow of a compressible fluid past a moving vertical plate considering the 

effect of radiation. Makinde (2005) and Samad and Rahman (2006) analysed free convection 

flow past a moving vertical porous plate taking thermal radiation and mass transfer into 

consideration. Orhan and Ahmet (2008) investigated radiation effect on MHD mixed 

convection flow about a permeable vertical plate.  Prasad et al. (2006) discussed transient 

radiative hydro-magnetic free convection flow past an impulsively started vertical plate while 

Ahmed and Dutta (2014) extended this work considering ramped wall temperature effect. 

Seth et al. (2017) considered MHD double diffusive natural convection flow over 

exponentially accelerated inclined plate. 

           The relations connecting the fluxes and driving potentials are of a more intricate in 

nature, when both thermal and solutal convections appear simultaneously in fluid motion. It 
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is observed that, a mass flux can be caused not only by the composition gradient but by 

temperature gradient as well. The effect of mass flux under temperature gradient, or the flow 

characteristics is termed as thermal-diffusion effect or Soret effect. The experimental 

investigation of this effect was first carried out in laboratory by the renowned chemist 

Charles Soret in 1879. The Soret effect is relevant to isotope separation in mixtures of gases 

with a very light molecular weight like H2 and He. Comprehensive literature on various 

aspects of Soret effect on different types of mass transfer problems can be found in the book 

of Eckert and Drake (1972). Kafoussias and Williams (1995) considered both Soret and 

Dufour effects on mixed convective boundary layer flow with temperature dependent 

viscosity while Postelnicu (2004) expanded this work in porous medium. Ahmed (2010) and 

Ahmed and Sengupta (2011) examined Soret and Dufour effects in a three dimensional MHD 

convective flow past an infinite vertical porous plate. Ahmed (2012) examined thermal 

diffusion and radiation effects on transient MHD free convection from an impulsively started 

infinite vertical plate. 

         In many works on MHD, a little attention is given to the effects caused by the induced 

magnetic field. In most of the cases, the induced magnetic field is neglected on assumption 

that, for most of the natural gases, the electrical conductivity is quite low and as a 

consequence the magnetic Reynolds number becomes very small. But when a high speed 

missile travels through the earth‟s atmosphere, a huge amount of heat is generated due to the 

friction of the gas molecules and this frictional heat may at times be so great as to ionize the 

gas in the surrounding air, near the stagnation point. The ionized gas in this stagnation region 

is electrically conducting. That is a magnetic field may be applied to it in order to induce an 

electromagnetic force in the air, which in turn affects the motion. Thus certain gases having 

low electrical conductivity may be good conductors under same physical conductors. It is 

recalled that the magnetic Reynolds number is the ratio of the induced magnetic field to the 

applied magnetic field. Thus, even though the magnetic Reynolds number is quite small, but 

the intensity of the imposed magnetic field is very high, the compute omission of the induced 

magnetic field is not fully justified. Realizing the importance of the induced hydro-magnetic 

effects on flows of electrically conducting fluids, several researchers have studied MHD flow 

problems under diverse physical and geometrical conditions. Singh and Singh (2000) 

analysed MHD effects on heat and mass transfer in flow of viscous fluid with induced 

magnetic field. Chaudhury and Sharma (2006) explored heat and mass transfer effects by 
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laminar mixed convection flow from a vertical surface with induced magnetic field while 

Hossain and Khatun (2012) extended this work taking Dufor effect into account.  

        Investigation on the effect of chemical reaction on heat and mass transfer in a flow is of 

great practical significance to the researchers owing to its nearly universal occurrence and 

wide scope of applications in many branches of engineering science. Many researchers have 

investigated the effect of chemical reaction on various mass transport flow problems. 

Apelblat (1982) studied combined effects of mass transfer, chemical reaction of first order 

and axial diffusion.  Andersson et al. (1994) considered diffusion of a chemically reactive 

species from a stretching sheet. Muthucumaraswamy and Ganesar (2001) investigated the 

effect of chemical reaction and injection in an unsteady upward motion of an isothermal 

plate. Kandasamy et al. (2005) studied exclusively the effects of chemical reaction and heat 

and mass transfer along a wedge with heat source and concentration in the presence of 

suction or injection. 

        As the present authors are aware, no attempt has been made till date to study the 

problem of a free convective MHD radiating flow past an impulsively started infinite vertical 

plate taking into account the effects of thermal diffusion and induced magnetic field. Such an 

attempt has been in the present work. 

2.2 Mathematical Analysis 

 The governing equations of the motion of an electrically conducting chemically 

reacting and radiating fluid in presence of a magnetic field having constant mass diffusivity 

and thermal diffusivity taking into account of diffusion- thermo effect are 

Continuity equation (based on law of conservation of mass and Newton‟s 2
nd

 law of motion) 

 0q   (2.1) 

Magnetic field continuity equation 

 0B   (2.2) 

Ampere‟s law 

 eB J   (2.3) 
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Momentum equation (based on law of conservation of linear momentum) 

   2q
q q p g J B q

t
  
 

         
 

 (2.4) 

Energy equation (based on law of conservation of energy) 

    2

p r

T
C q T T q T T

t
   

 
        

 (2.5) 

Species continuity equation (based on law of conservation of species) 

    2 2

M T

C
q C D C D T K C C

t



       


 (2.6) 

Magnetic diffusion equation with small magnetic Reynolds number 

 2B
B

t



 


 (2.7) 

Equation of state 

    1 T T C C     
        (2.8) 

All the physical quantities are defined in the list of symbols. 

 Suppose we consider an unsteady free convective MHD mass transfer flow of a 

viscous incompressible electrically conducting optically thick non-Gray fluid past a suddenly 

started semi- infinite vertical plate in presence of a transverse magnetic field taking into 

account the diffusion- thermo effect. 

 In order to idealize the mathematical model, the present investigation is restricted to 

the following constraints- 

I. All the fluid properties are constants except the variation in density in the 

buoyancy force term. 

II. The viscous dissipations of energy are negligible. 

III. The magnetic Reynolds number is small. 

IV. The plate is electrically non- conducting. 
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V. The radiation heat flux in the direction of the plate velocity is negligible in 

comparison to that in the normal direction. 

VI. The flow is parallel to the plate. 

VII. No external electric field is applied for which the polarization voltage is 

negligible. 

VIII. The chemical reaction is of first order and homogeneous. 

IX. The temperature and concentration fields are independent of the distance parallel 

to the surface.  

 

Initially, the plate and the surrounding fluid were at the same temperature T with 

concentration level C  at all points of the fluid. At time 0t  , the plate is suddenly moved 

in its own plane with speed 0U . The plate temperature and concentration are instantly raised 

to  wT T T   and  wC C C  which are thereafter maintained constant.                                                                                                                                                                    

 

Figure 2.1: Flow Diagram 

We introduce a rectangular Cartesian co- ordinate system  , ,x y z  with X- axis 

vertically upwards, Y- axis normal to the plate directed into the fluid region, Z- axis along the 

width of the plate. Let  ,0,0q u be the fluid velocity,  0, ,0xB B B be the magnetic 

induction vector and  0, ,0r rq q  be the radiation heat flux at the point  , , ,x y z t in the 

fluid. 

Z 

Y 
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Equation (2.1) gives 

 

 

0

. ., ,

u

x

i e u u y t
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 (2.9) 

Equation (2.2) gives 
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0
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x x
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i e B B y t
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 (2.10) 

Equation (2.4) reduces to 

  2

0
ˆ ˆ ˆ ˆ ˆ ˆxBu p p

u u i i j gi B i u i
t x x y y

   
      

                 
 (2.11) 

Equation (2.11) gives 
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0 2

xBu p u
g B

t x y y
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   
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 (2.12) 

and 

 0
p

y


 


 (2.13) 

Equation (2.13) shows that pressure near the plate and pressure far away from the 

plate is same along the normal to the plate.  

For fluid region far away from the plate, equation (2.12) takes the form 

 0
p

g
x




  


 (2.14) 

Eliminating 
p

x




 from (2.12) and (2.14), we get 

  
2
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xBu u
g B

t y y
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  
 (2.15) 
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Equation of state (2.8) gives 

    T T C C      
      

 (2.16) 

Putting value of (2.16) in (2.15) 
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The radiation heat flux as per Rosseland approximation is given by 
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Using (2.17), Energy equation (2.5) reduces to 
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Species continuity equation (2.6) reduces to 
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Magnetic diffusion equation (2.7) becomes 
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The appropriate initial and boundary conditions are 
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 (2.21) 

For the sake of normalization of the mathematical model of the problem, we introduce 

the following non- dimensional quantities- 
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The non-dimensional non- dimensional governing equations are 
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The initial and boundary conditions becomes 
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 (2.26) 

2.3 Method of Solution 

 Taking Laplace transform of the equations from (2.22) to (2.25) and applying the 

conditions (2.26), we get the following governing equations- 
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subject to the initial and boundary conditions 
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 Solving the equations from (2.27) to (2.30) subject to the conditions (2.31) and taking 

inverse Laplace transform of the solutions, the expressions for the induced magnetic field xB , 

temperature field  , concentration field  , and velocity field u are as follows- 
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 (2.35) 

2.4 Nusselt Number 

The heat flux 
*q  at the plate 0y  is obtained by Fourier‟s law of conduction is given by 
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is called the Nusselt number which is 

concerned with the rate of heat transfer at the plate. 

Equation (2.37) gives, 

 1Nu    (2.38) 

2.5 Sherwood Number 

The mass flux wM  at the plate 0y   is specified by Fick‟s law of diffusion is given by 
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Equation (2.39) gives  
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 is called the Sherwood number which is associated with the 

rate of mass transfer at the plate. 

Equation (2.40) yields 

  2 1 2Sh       (2.41) 

2.6 Skin Friction 

The viscous drag at the plate 0y   is determined by Newton‟s law of viscosity is given by 
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Equation (2.42) gives 
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In (2.43), 
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  is called the skin friction or coefficient of friction which is associated 

with the rate of momentum transfer at the plate. 

Equation (2.43) yields, 
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 (2.44) 

2.7 Results and Discussion 

 In order to study the effects of the physical parameters involved in the problem on the 

flow and transport characteristics numerical calculations for induced magnetic field, 

temperature field, concentration field, velocity field, skin friction, Nusselt number, Sherwood 

number at the plate are carried out by assigning some specific values to the parameters and 

variables. 

 The numerically computed results are displayed graphically from Figures 2.2 to 2.19 

Figure 2.2 and Figure 2.3 represent the variations of induced magnetic field versus 

normal co- ordinate y under magnetic Prandtl number Pm and time t. Figure 2.2 shows that 

there is a steady fall in induced magnetic field for increasing magnetic Prandtl number. This 

is due to the fact that increasing magnetic Prandtl number decreases magnetic diffusivity and 

consequently induced magnetic field loses its strength significantly. As time progresses, 
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induced magnetic field increases as it is reflected in Figure 2.3. Both figures uniquely 

establish the fact that the induced magnetic field falls asymptotically from its maximum value 

at 0y  to its minimum value as y  . 

Figures 2.4 to 2.6 represent the variations of temperature field versus normal co- 

ordinate y under Prandtl number Pr, time t, and heat absorption parameter Q . Figure 2.4 

shows that there is a steady fall in temperature field for increasing Prandtl number. Increasing 

Prandtl number reduces thermal boundary layer and as a result heat diffuses quickly. Thus, 

temperature field reduces to a considerable extent. As time progresses, temperature field 

increases as it is reflected in Figure 2.5. It is informed from Figure 2.6 that the fluid 

temperature gets decreased significantly as the heat absorption parameter increases. When 

absorbed, heat weakens the inner- particle bond of the fluid and as a result temperature 

reduces as expected.  From these figures, we can conclude that the temperature field falls 

asymptotically from its maximum value at 0y  to its minimum value as y  . 

Figures 2.7 to 2.10 represent the variations of concentration field versus normal co- 

ordinate y under Prandtl number Pr, time t, chemical reaction parameter K and Schmidt 

number Sc . Figure 2.7 shows that there is a steady rise in concentration field for increasing 

Prandtl number. It gives us an idea that higher thermal diffusivity lowers concentration field. 

Concentration field keeps increasing trend with time which is reflected in Figure 2.8. Figure 

2.9 exhibits that there is a considerable decrement in temperature field for increasing 

chemical reaction parameter K. Higher chemical reaction parameter suggests that chemical 

substances of the fluid consumed rapidly and consequently concentration reduces. Figure 

2.10 admits that concentration field gets lowered as the values of Schmidt number increases. 

It establishes the fact that increasing mass diffusivity results in a rise the concentration field. 

From these figures, we can conclude that the concentration field falls asymptotically from its 

maximum value at 0y  to its minimum value as y  . 

Figures 2.11 to 2.15 focus the variations of velocity field versus normal co- ordinate y 

under Soret number Sr , solutal  Grashof number Gm , thermal Grashof number Gr , time t 

and heat absorption parameter Q . Figure 2.11 show that fluid velocity decreases with 

increasing values of Soret number. This gives us an idea that higher molar thermal diffusivity 

reduces the fluid velocity .Figure 2.12 admits that velocity hikes with increasing values of 

solutal Grashof number. Figure 2.13 shows that upsurge of thermal Grashof number increases 

the fluid velocity. Figure 2.12 and Figure 2.13 uniquely establish the fact that both solutal and 
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thermal buoyancy force hike fluid velocity.  As time progresses, velocity hikes as it is 

reflected in Figure 2.14. Figure 2.15 indicates that increasing values of heat absorption 

parameter declines the fluid velocity. When heat is absorbed, inter particle bonds of the fluid 

weaken, and kinetic energy is lost. As a result motion of the fluid is retarded. 

Figure 2.16 and Figure 2.17 represent the variations of Nusselt number versus time t 

under Prandtl number Pr and heat absorption parameter Q . Figure 2.16 shows that there is a 

steady rise in Nusselt number for increasing Prandtl number. This is because enhancement of 

molar thermal diffusivity lowers the rate of heat transfer from the plate to the fluid. Figure 

2.17 depicts that Nusselt number keep on increasing for increasing values of heat absorption 

parameter. This is obvious that faster chemical consumption produces heat and it is 

transferred from plate to the fluid rapidly. 

Figure 2.18 and Figure 2.19 represent the variations of Sherwood number versus time 

t under Prandtl number Pr and Soret number Sr . Figure 2.18 exhibit that there is a steady rise 

in Sherwood number for increasing Prandtl number. This gives us an idea that higher molar 

thermal diffusivity lowers the rate of mass transfer from the plate to the fluid. Figure 2.19 

depicts that there is a comprehensive rise in Sherwood number for increasing values of Soret 

number. So, high temperature gradient compared to concentration gradient speed up rate of 

mass transfer. 

Figure 2.20 and Figure 2.21 depict the variations of skin friction versus time t under 

thermal Grashof number Gr and Soret number Sr . Figure 2.20 shows that there is a 

comprehensive rise in Sherwood number for ascending Prandtl number. This is due to the 

fact that thermal buoyancy force has a tendency to increase rate of momentum transfer from 

the plate to the fluid. Figure 2.21 reveals that increasing Soret number hikes coefficient of 

friction. Thus, high temperature gradient rapidly hikes the rate of momentum transfer. 

2.8 Comparison of Result 

 To check the accuracy of our result, we have compared one of our results with Ahmed 

and Sarmah (2009) who considered the thermal radiation effect on a transient MHD flow 

with mass transfer past an impulsively fixed infinite vertical plate. In absence of Soret effect 

and chemical reaction effect (i.e., Sr=0 and K=0), expression of concentration field of the 

present problem is 
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  erfc Sc 
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Figure 2.22 and Figure 2.23 display the concentration field versus η graphs for 

different Schmidt number obtained by Ahmed and Sarmah (2009) and present authors 

respectively. Both figures uniquely expresses the fact that concentration field declines for 

ascending values of Schmidt number. Hence, an excellent agreement of results between 

present authors and Ahmed and Sarmah (2009) is observed. 

2.9 Conclusions 

 The key motive of the present investigation is to study exclusively the effects of 

radiation, heat absorption, chemical reaction, induced magnetic field and thermal diffusion 

effect of an unsteady MHD flow past a. Study of flow and transport properties under the 

action of different parameters was carried out with help of graphs.  The major outcomes of 

the present work are as follows: 

i. Induced magnetic field falls for higher magnetic Prandtl number. 

ii. Increasing Prandtl number lowers temperature field. 

iii. Concentration field decreases as Schmidt number increases. 

iv. Higher solutal Grashof number hikes velocity field in a thin fluid layer adjacent to 

the plate and thereafter its behaviour takes a reverse turn. 

v. Nusselt number and Sherwood number decreases for small time and thereafter 

become stationary. 

vi. Increasing Soret number upsurges skin friction. 

The solution of the present work also validates with the previous result obtained by 

Ahmed and Sarmah (2009) in particular case.  
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Figure 2.2: Induced magnetic field versus y for different Pm and t=1 

Figure 2.3: Induced magnetic field versus y for different t and Pm=0.71 

Figure 2.4: Temperature field versus y for different Pr and t=1, =0.5, =1 
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Figure 2.5: Temperature field versus y for different t and Pr=0.71,  

Figure 2.6: Temperature field versus y for different Q and t=1, Pr=0.71,  

Figure 2.7: Concentration field versus y for different Pr and 

t=1, Q=0.5, =1, Sc=0.22, K=1 
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Figure 2.8: Concentration field versus y for different 

t and Pr=0.71, Q=0.5, =0.5, Sc=0.22, K=1 

Figure 2.9: Concentration field versus y for different 

K and t=1, Pr=0.71, Q=0.5, =1, Sc=0.22 

Figure 2.10: Concentration field versus y for 

different Sc and t=1, Pr=0.71, Q=0.5, =1, K=1 
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Figure 2.11: Velocity field versus y for different Sr and t=0.2, Pr=0.71, 

Pm=5, Gr=10, Gm=5, Sc=0.6, Q=1, M=0.5, П=0.5, =0.5, K=10 

Figure 2.12: Velocity field versus y for different Gm and t=0.2, Pr=0.71, 

Pm=5, Gr=5, Sc=0.6,Sr=0.5, Q=1, M=0.5, П=0.5, =0.5, K=10 

Figure 2.13: Velocity field versus y for different Gr and t=0.2, 

Pr=0.71,Pm=5, Gm=5, Sc=0.6, Sr=1, Q=1, M=0.5, П=0.5, =0.5, K=10 
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Figure 2.14: Velocity field versus y for different t and Pr=0.71, Pm=5, 

Gr=10, Gm=5, Sc=0.6, Sr=1, Q=1, M=0.5, П=0.5, =0.5, K=10 

Figure 2.15: Velocity field versus y for different Q and t=0.2, Pr=0.71, 

Pm=5, Gr=10, Gm=15, Sc=0.6, Sr=5, M=0.5, П=0.5, =0.5, K=10 

Figure 2.16: Nusselt number versus t for different Pr and Q=1, Λ=1 
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Figure 2.17: Nusselt number versus t for different Q and Pr=0.71, Λ=1 

Figure 2.18: Sherwood number versus t for different Pr and 

Q=1, Λ=1, Sc=0.22, K=4, Sr=5 

Figure 2.19: Sherwood number versus t for different Sr 

and Pr=0.71, Q=1, Λ=1, Sc=0.22, K=4 
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Figure 2.20: Skin friction versus t for different Gr and 

Pr=0.71,Pm=5, Gm=1, Sr=5, M=0.5, П=0.5, Λ=1, Sc=0.22, K=3 

Figure 2.21: Skin friction versus t for different Sr and Pr=0.71, 

Pm=5, Gr=1, Gm=1, M=0.5, П=0.5, Λ=1, Sc=0.22, K=3 

Figure 2.22: Scanned graph of concentration field vesusus η for 

different Schmidt number α drawn by Ahmed and Sarmah (2009) 
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Figure 2.23: Concentration field vesusus η for 

different Schmidt number Sc drawn by present author 
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Nomenclature:  

B   : Magnetic flux density  

0B
 
: Strength of the applied magnetic field 

xB  : Induced magnetic field  

C   : Molar species concentration  

pC
 
: Specific heat at constant pressure 

C : Concentration far away from the plate  

wC  : Concentration at the plate 

MD : Mass diffusivity 

TD  : Molar thermal diffusivity  

g    : Gravitation acceleration vector  

g    : Gravitational acceleration  

Gr  : Thermal Grashof number 

Gm : Solutal Grashof number  

0H  : Induced magnetic field 

J   : Current density vector 

*  : Mean absorption constant 

K  : Chemical reaction rate 
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K  : Chemical reaction parameter 

M : Magnetic parameter 

N : Radiation parameter 

Q  : Heat absorption parameter 

p  : pressure 

Pm : Magnetic Prandtl number 

Pr : Prandtl number 

q   : Fluid velocity vector 

rq  : Radiation heat flux vector 

rq   : Radiation heat flux 

Sc  : Schmidt number 

t     : time 

T   : Fluid temperature 

T  : Undisturbed temperature 

/u  : X-component of fluid velocity 

0U : Plate velocity 

Greek Symbols: 

   : Magnetic diffusivity 

e  
: Magnetic permeability 

   : Coefficient of viscosity 

   : Electrical conductivity 
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*  : Stefan-Boltzmann constant 

   : Fluid density 

  : Fluid density far away from the plate 

   : Thermal conductivity 

   : Heat absorption rate 

   : Volumetric coefficient of thermal expansion 

   : Volumetric coefficient of solutal expansion  

   : Kinematic viscosity 

Subscripts: 

w  : Refers to physical quantity at the plate 

   : Refers to physical quantity far away from the plate 
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(The functions are defined in Chapter I)
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3.1 Introduction 

Magnetohydrodynamics (MHD) is the section of physics that deals with the dynamics 

of electrically conducting fluid under the influence of a magnetic field. Plasmas, liquid 

metals, electrolytes, ionized gases are some well-known examples of such fluids. MHD 

covers the connection between the magnetic field and the velocity of the conducting fluid. 

The field of MHD was initiated by Swiss physicist Hannes Alfven (1942). There are several 

applications of MHD. Dynamo and motor work on principles of MHD. Engineers use MHD 

in metal dispersion, fusion reactors, metallurgy, etc. Besides these, MHD has vast 

applications in aeronautics, chemical and electrical engineering, medicine, and biological 

sciences. Pioneer authors due to whose contribution MHD is at present form are Cowling 

(1957), Ferraro and Plumpton (1966), Shercliff (1965), and Crammer and Pai (1973), etc. 

 Density variation in a fluid mixture occurs owing to the change in species 

concentration and fluid temperature. This variation generates buoyancy forces acting on the 

fluid. The flow arising due to this force is labeled as natural convection or free convection. 

Natural convection on MHD flow was studied exclusively by Raptis and Singh (1983), 

Hosain and Ahmed (1990), Takhar et al. (1996), Helmy (1998), etc. Nandi and Kumbhakar 

(2020) studied free convective MHD flow past a permeable vertical plate with periodic 

movement in presence of hall current and rotation.  

 The process of heat transfer through an electromagnetic wave is classified as 

radiation. Radiative convective flows can be found in numerous environmental and industrial 

processes. This type of flow takes a pivotal role in high-temperature processes and space 

technology. It is also used in the polymer processing industry. Influencing by the importance 

of applications, many authors have performed model research on free convection in many 

hydrodynamic and magnetohydrodynamics flow problems with thermal radiation effects 

under different physical and geometrical circumstances. Mbeledogu et al. (2007), Makinde 

(2005), Orhan and Ahmet (2008), Samad and Rahman (2006), Prasad et al. (2006), Seth et al. 

(2017), Balla and Naikoti (2015), Siviah et al. (2012), etc. are some authors in this field 

whose work are worth mentioning. Seth et al. (2016) discussed the effect of Hall current in a 

free convective, radiative, and heat-absorbing MHD flow past a moving vertical plate with 

ramped temperature. Ahmed and Dutta (2014) obtained the exact solution of a free 

convective transient MHD flow past an infinite vertical plate with radiation and ramped wall 

temperature. 
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 When both thermal and solutal convection appears simultaneously on fluid motion, 

the relationship of driving potentials and fluxes are complex. Then mass flux is produced by 

both temperature gradient and concentration gradient. Effect of mass flux under temperature 

gradient is labeled as Soret effect or thermal diffusion effect. This effect appears when 

components of fluid are kept in different temperatures. This effect arises due to the flow of 

molecules from hotter regions to cooler regions. C. Ludwing first observed this effect in 

1859. But the first experimental work on this effect was performed in the laboratory by noted 

Swiss chemist Charles Soret in 1879. This effect has numerous applications in many 

chemical and physical processes, isotope separation, etc. Consequences of the Soret effect in 

various mass transfer problems were studied by Kafoussias and Williams (1995), Eckert and 

Drake (1972), Postelnicu (2004), Ahmed (2010), and Ahmed and Sengupta (2011). 

 The present investigation aims to study and analyze the problem of a transient MHD 

flow past a suddenly accelerated semi-infinite vertical plate with parabolic ramped 

temperature along with concentration taking into account the thermal diffusion effect under 

the imposition of a uniform transverse magnetic field. Reviewing the literature, we found that 

no attempt has been made in this area. The governing equations of this problem are first 

transformed into a set of normalized equations and they are solved analytically with the help 

of the Laplace transformation technique. The flow phenomena are described using different 

parameters viz. magnetic parameter, Prandtl number, Ramped parameter, Schmidt number, 

thermal Grashof number, solutal Grashof number, etc. Effect of these parameters on the 

concentration field, temperature field, velocity field, Sherwood number, Nusselt number, and 

skin friction are analyzed and the results are discussed intensely with the assistance of graphs. 

3.2 Mathematical Analysis 

Equations that governs the convective flow of a viscous, radiating, electrically 

conducting, and incompressible fluid in presence of a magnetic field having constant mass 

diffusivity and thermal diffusivity considering thermo- diffusion effect are 

Equation of continuity: 

 0q   (3.1) 

Equation of magnetic field continuity: 

 0B   (3.2) 
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Ohm‟s Law: 

  J E q B    (3.3) 

Equation of momentum: 

   2q
q q p g J B q

t
  

 
          

 (3.4) 

Equation of energy: 

   2

p r

T
C q T T q

t
 

 
      

 (3.5) 

Species continuity equation: 

   2 2

M T

C
q C D C D T

t


     


 (3.6) 

Equation of state as per Boussinesq approximation: 

    1 T T C C     
      

 (3.7) 

According to Rosseland approximation for optically thick and non-gray fluid, 

radiative heat flux is  

 
*

4

*

4

3
rq T




  

 

Now, 

  
44 3 44 3 , 1T T T T TT T as T T            

So, 

 
* 3

2

*

16

3
r

T
q T




     

Therefore, Energy equation (5) reduces to 
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Figure 3.1: Flow Configuration 

  
* 3
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p

TT
C q T T T

t


 


 

       
 (3.8) 

 Now we consider a transient MHD free convective flow of an incompressible, 

electrically conducting, and viscous fluid past a semi-infinite moving vertical plate. Suppose, 

a uniform magnetic field is applied normally to the plate, directed into the fluid region. 

Originally, the plate and neighboring fluid were static with uniform temperature T along 

with concentration C . The plate is allowed to move suddenly at 0t  , with acceleration 0

0

U

t
 

for 00 t t  . For 0t t , the plate moves with a uniform speed 0U . The plate concentration 

and temperature are instantaneously raised to 2

2

0

wC C
C t

t





  and 2

2

0

wT T
T t

t







  

respectively, for 00 t t  , where wT T , and wC C . Thereafter, the plate attains constant 

temperature wT  and constant concentration wC
 
for 0t t . 

 To idealize the mathematical model, the following constraints are imposed- 

I. Except for the density variation and buoyancy force, all other fluid characteristics 

are assumed to be constant. 

II. Dissipation of energy due to friction and Joule heating is negligible. 

III. Flow is parallel to the plate and one- dimensional. 

IV. Polarization voltage is negligible. 

V. The plate is insulating. 
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We now consider a tri- rectangular Cartesian coordinate  , , ,x y z t with X-axis is taken 

vertically upwards along the plate, Y-axis is taken normal to the plate directed into the fluid 

region and Z-axis is taken along the width of the plate. Let the fluid velocity be  ,0,0q u  

and  00, ,0B B be the magnetic induction vector.  

Equation (3.1) yields, 

 

 

0

. ., ,

u

x

i e u u y t






 

 (3.9) 

Equation (3.2) is satisfied trivially  

Equation (3.4) reduces to 

 
2

2

0 2
ˆ ˆ ˆ ˆ ˆ ˆ0

u p p u
i i j gi B u i i

t x y y
   

     
           

 (3.10) 

Equation (3.10) gives 

 
2

2

0 2

u p u
g B u

t x y
   

   
    

  
 (3.11) 

and 

 0
p

y


 


 (3.12) 

Equation (3.12) shows that pressure near the plate and pressure far off the plate is the same 

along the normal to the plate. 

For fluid far off the plate, equation (3.11) becomes 

 0
p

g
x




  


 (3.13) 
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Eliminating 
p

x




 from (3.11) and (3.13), we get 

  
2

2

0 2

u u
g B u

t y
    

  
   

 
 (3.14) 

Now, (3.7) gives, 

    T T C C      
        (3.15) 

Putting value of (3.15) in (3.14), 
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2
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u u
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t y
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 (3.16) 

Equation (3.8) yields, 
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 (3.17) 

Equation (3.6) becomes, 
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The relevant initial and boundary conditions are: 
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 (3.19) 

The mathematical model is normalized with the help of the following non-

dimensional parameters and variables- 
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The non- dimensional governing equations are 
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2
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 (3.21) 
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 (3.22) 

The relevant initial and boundary conditions are: 
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 (3.23) 

3.3 Method of Solution 

On taking the Laplace transform of the equations (3.21), (3.22), and (3.20) respectively, we 

get: 
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2

2

1 d u
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Ra dy
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Relevant initial and boundary conditions are: 
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Solving equations from (3.24) to (3.26) subject to the conditions (3.27) and obtaining inverse 

Laplace transform of the results, the expressions of temperature field , concentration field , 

and velocity field u are : 

 
1,1 1,2     (3.28) 

   1,1 1,21       (3.29) 
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u u u u Sc

u u u u Sc
u
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     


     
 

     
      

 (3.30) 

3.4 Nusselt Number 

According to Fourier‟s law of conduction, heat flux 
*q  at the plate 0y  is  
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Here, 
* 3

*

0 *

16

3

T
 


   is the modified thermal conductivity. 

Equation (3.31) yields 
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


 is called the Nusselt number which is concerned with heat transfer rate at 

the plate. 

Equation (3.32) gives, 

  1 12Nu       (3.33) 

3.5 Sherwood Number 
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According to Fick‟s law of diffusion, mass flux wM  at the plate 0y   is  

 
0

w M

y

C
M D

y



  

 
 (3.34) 

Equation (3.34) gives  
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In (3.35), 
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 is called the Sherwood number which is associated with mass 

transfer rate at the plate. 

Equation (3.35) yields 

     2 2 1 12 1Sh              
 

 (3.36) 

3.6 Skin Friction 

According to Newton‟s law of viscosity, viscous drag   at the plate 0y   is  
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y
 




  
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 (3.37) 

Equation (3.37) gives 

 
0y

u

y





  

 
 (3.38) 

In (3.38), 0t


  is called the skin friction or coefficient of friction which is associated with 

the rate of momentum transfer at the plate. 

Equation (3.38) yields, 
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 (3.39) 

3.7 Results and Discussion 

We study how the flow parameters involved affect the flow and transport properties. 

The numerically computed results are displayed from Figures 3.2 to 3.33. 

Figures 3.2 to 3.5 show the variation in temperature field versus normal co-ordinate y  

under time t , Prandtl number Pr, radiation parameter N , and Ramped parameter Ra . Figure 

3.2 indicates that the temperature field hikes as time progresses. Figure 3.3 reveals that the 

temperature field gets lowered as the Prandtl number increases. In other words, higher 

thermal diffusivity upsurges the temperature field. Figure 3.4 displays that the temperature 

field decreases as the radiation parameter increases. In real life system, it is observed that 

radiation tends to decrease temperature. This physical observation is reflected here. Figure 

3.5 admits that there is a comprehensive fall in the temperature field as Ramped parameter 

increases. An increase in Ra means a fall . Thus, the temperature rises as the friction of fluid 

increases. This observation is in excellent agreement with the fact that the fluid temperature 

increases for fluid having large friction. From these figures, we can conclude that the 

temperature field asymptotically declines from its highest value at 0y 
 to lowest value as

y  . 

Figures 3.6 to 3.10 represent the variation in concentration field versus normal co-

ordinate y  under Prandtl number Pr, radiation parameter N and Ramped parameter Ra , 

Schmidt number Sc , and Soret number Sr . Figure 3.6 reveals that the concentration field 

decreases as the Prandtl number increases. This gives us an idea that higher thermal 

diffusivity upsurges the concentration field. Figure 3.7 indicates that the concentration field 

gets lowered with increment in radiation parameter. From a general idea in physics, it follows 

that fluid gets thinner as radiation from fluid to atmosphere increases. This phenomenon is 

reflected here. Figure 3.8 reveals that the concentration field decreases for increasing Ramped 

parameter. From the definition, it is noticed that Ramped parameter is inversely proportional 

to kinematic viscosity. Hence, fluid gets thicker for higher friction. Figure 3.9 suggests that a 

higher Schmidt number lowers the concentration field. This informs us that increment in 
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mass diffusivity upsurges concentration field. Figure 3.10 confesses us that a higher Soret 

number hikes the concentration field. The Soret effect is concerned with mass flux under 

temperature gradient. An increment in Soret number indicates a comprehensive rise in 

temperature gradient over the concentration gradient. Hence, an increment in temperature 

gradient results in a rise in the concentration level of the fluid. 

Figures 3.11 to 3.18 explain the variation in velocity field versus normal co-ordinate

y  under time t , Prandtl number Pr, Ramped parameter Ra , Schmidt number Sc , thermal 

Grashof number Gr , solutal Grashof number Gm , magnetic parameter M and Soret number 

Sr. Velocity field hikes with time as shown in Figure 3.11. Figure 3.12 suggests that the 

velocity field decreases with increasing Prandtl number. Thus, higher thermal diffusivity 

upsurges the velocity field. Figure 3.13 gives us an idea that velocity increases with 

increasing Ramped parameter near the plate and its nature changes afterward. As the Ramped 

parameter is inversely proportional to kinematic viscosity, so, fluid velocity decreases in a 

thin layer adjacent to the plate but increases outside the layer as friction at the plate hikes.  

Velocity field hikes with increasing Schmidt number as shown in Figure 3.14. Hence, higher 

mass diffusivity declines fluid velocity. There is a comprehensive rise in velocity field with 

increasing thermal Grashof number as noticed in Figure 3.15. Higher solutal Grashof number 

upsurges velocity field as displayed in Figure 3.16. Thermal Grashof number refers to 

buoyancy force under temperature gradient whereas solutal Grashof number refers to 

buoyancy force under a concentration gradient. Thus both Figure 3.15 and Figure 3.16 assert 

that buoyancy force increases fluid velocity.   Figure 3.17 indicates that the velocity field 

decline with increasing magnetic parameter. Since the electromagnetic field is applied in the 

transverse direction, so increase in electromagnetic force declines fluid velocity. Velocity 

field rises substantially for increasing Soret number as observed in Figure 3.18. So, if the 

temperature gradient is higher than the concentration gradient, then fluid velocity increases. 

Figures 3.19 to 3.21 show the variation in Nusselt number versus time t under Prandtl 

number Pr, radiation parameter N , and Ramped parameter Ra . Figure 3.19 suggests that 

increment in the Prandtl number upsurges the Nusselt number. This indicates that higher 

thermal diffusivity lowers the Nusselt number. Figure 3.20 admits that the Nusselt number 

keep the increasing trend with higher radiation parameter. Thus, radiation accelerates the rate 

of heat transfer from the plate to the fluid.  Nusselt number rises with increasing Ramped 
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parameter as shown in Figure 3.21. In other words, increasing viscosity decelerates the heat 

transfer process. 

Figures 3.22 to 3.26 represent the variation in Sherwood number versus time t  under 

Prandtl number Pr, radiation parameter N , Ramped parameter Ra , Soret number Sr , and 

Schmidt number Sc . Figure 3.22 reveals that the Sherwood number declines with increasing 

Prandtl number. Thus, higher thermal diffusivity increases the Sherwood number. Figure 3.23 

admits that the Sherwood number gets lowered as the radiation parameter hikes. Thus 

radiation tends to slow down the mass transfer process from the plate to the fluid. Sherwood 

number upsurges with increment in Ramped parameter as shown in Figure 3.24. The friction 

declines the process of mass transfer to a good extent. Figure 3.25 gives us an idea that the 

higher Soret number declines Sherwood number. This establishes the fact that a lower 

concentration gradient compared to a high-temperature gradient decelerates the mass transfer 

process. Figure 3.26 suggests that there is an upsurge in Sherwood number as Schmidt 

number hikes. Alternatively, we can say that increasing mass diffusivity decreases the 

Sherwood number. 

Figures 3.27 to 3.33 explain the variation in skin friction versus time t under Prandtl 

number Pr, Ramped parameter Ra , Schmidt number Sc , Soret number Sr , thermal Grashof 

numberGr , solutal Grashof number Gm , and magnetic parameter M . Skin friction falls 

comprehensively with an upsurge in Prandtl number as shown in Figure 3.27. In other words, 

we can say that higher thermal diffusivity raises skin friction. Figure 3.28 admits that skin 

friction declines as Ramped parameter hikes. So, increasing kinematic viscosity hikes 

frictional resistivity at the plate. Figure 3.29 reveals that skin friction gets decreased as 

Schmidt number increases. This admits that higher mass diffusivity enhances skin friction. 

Skin friction lowers with increasing Soret number as displayed in Figure 3.30. Hence, the 

concentration gradient offers more frictional resistance at the plate compared to the 

temperature gradient. Figure 3.31 suggests that skin friction gets lowered as the thermal 

Grashoff number increases. Skin friction falls significantly with increasing solutal Grashoff 

number as shown in Figure 3.32. Both Figures 3.31 and 3.32 express the fact that buoyancy 

force tends to lower frictional resistance at the plate. Figure 3.33 admits that skin friction 

hikes as magnetic parameter upsurges. In other words, the electromagnetic force increases 

frictional resistivity at the plate. 
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3.8 Conclusions 

The significant findings of our investigation are as follows:  

i. The temperature field falls for a higher Ramped parameter. 

ii. Ascending values of the Prandtl number lowers the concentration field. 

iii. Velocity field accelerates for higher Soret number. 

iv. Nusselt number upsurges for increasing Ramped parameter. 

v. Higher Schmidt increases the Sherwood number. 

vi. Increasing Soret number declines skin friction. 

 

  



91 

 

 

 

 

 

 

 

Figure 3.2: Temperature field versus y for different t and Pr=0.71, Ra=5, N=1 

Figure 3.3: Temperature field versus y for different Pr and t=5, Ra=5, N=1 

Figure 3.4: Temperature field versus y for different N and t=5, Ra=5, Pr=0.71 
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Figure 3.5: Temperature field versus y for different Ra and t=5, N=1, Pr=0.71 

Figure 3.6: Concentration field versus y for different Pr 

and t=1.2, N=1, Ra=5, Sc=0.22, Sr=0.5 

Figure 3.7: Concentration field versus y for different N 

and t=1.2, Ra=5, Sc=0.22, Sr=0.5, Pr=0.71 
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Figure 3.8: Concentration field versus y for different Ra 

and t=1.2, N=1, Sc=0.22, Sr=0.5, Pr=0.71 

Figure 3.9: Concentration field versus y for different Sc 

and t=1.2, Ra=1, Sr=1, Pr=0.71, N=1 

Figure 3.10: Concentration field versus y for different Sr 

and t=1.2, Ra=1, Pr=0.71, N=1, Sc=0.22 



94 

 

 

 

 

 

 

 

Figure 3.11: Velocity field versus y for different t and 

Pr=0.71, Ra=5, =0.2, Sr=0.5, Gr=5, Gm=5, Sc=2, M=1 

Figure 3.12: Velocity field versus y for different Pr and 

t=2, Ra=5, =0.2, Sr=0.5, Gr=1, Gm=1, Sc=2, M=1 

Figure 3.13: Velocity field versus y for different Ra and 

t=2, Pr=0.71, =0.2, Sr=0.5, Gr=5, Gm=1, Sc=2, M=1 
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Figure 3.14: Velocity field versus y for different Sc and 

t=2, Pr=0.71, Ra=1, =0.2, Sr=0.5, Gr=1, Gm=1, M=1 

Figure 3.15: Velocity field versus y for different Gr and 

t=2, Pr=0.71, Ra=5, =0.2, Sr=0.5, Gm=1, Sc=2, M=1 

Figure 3.16: Velocity field versus y for different Gm and 

t=2, Pr=0.71, Ra=5, =0.2, Sr=0.5, Gr=1, Sc=2, M=1 
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Figure 3.17: Velocity field versus y for different M and 

t=2, Pr=0.71, Ra=5, =0.2, Sr=0.5, Gr=1, Gm=1, Sc=2 

Figure 3.18: Velocity field versus y for different Sr and 

t=2, Pr=0.71, Ra=5, =0.2, Sr=0.5, Gr=1, Gm=1, Sc=2 

Figure 3.19: Nusselt number versus t for different Pr and N=1, Ra=5 
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Figure 3.20: Nusselt number versus t for different N and Pr=0.71, Ra=5 

Figure 3.21: Nusselt number versus t for different Ra and Pr=0.71, N=1 

Figure 3.22: Sherwood number versus t for different 

Pr and N=1, Ra=1, Sr=3, Sc=0.22 
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Figure 3.23: Sherwood number versus t for different 

N and Pr=0.71, Ra=1, Sr=3, Sc=0.22 

Figure 3.24: Sherwood number versus t for different 

Ra and Pr=0.71, N=1, Sr=3, Sc=0.22 

Figure 3.25: Sherwood number versus t for different 

Sr and Pr=0.71, N=1, Ra=1, Sc=0.22 
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Figure 3.26: Sherwood number versus t for 

different Sc and Pr=0.71, N=1, Ra=1, Sr=1 

Figure 3.27: Skin friction versus t for different Pr 

and Ra=1, =0.2, Sc=2, Sr=2, Gr=1, Gm=1, M=1 

Figure 3.28: Skin friction versus t for different Ra and 

Pr=0.71, =0.2, Sc=2, Sr=2, Gr=1, Gm=1, M=1 
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Figure 3.29: Skin friction versus t for different Sc and 

Pr=0.71, Ra=1, =0.2, Sr=5, Gr=1, Gm=1, M=1 

Figure 3.30: Skin friction versus t for different Sr and 

Pr=0.71, Ra=1, =0.2, Sc=2, Gr=1, Gm=1, M=1 

Figure 3.31: Skin friction versus t for different Gr 

and Pr=0.71, Ra=1, =0.2, Sc=2, Sr=1, Gm=1, M=1 
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Figure 3.32: Skin friction versus t for different Gm and 

Pr=0.71, Ra=1, =0.2, Sc=2, Sr=1, Gr=1, M=1 

Figure 3.33: Skin friction versus t for different M and 

Pr=0.71, Ra=1, =0.2, Sc=2, Sr=1, Gr=1, Gm=1 
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Nomenclature:  

B : Magnetic flux density  

0B : Applied magnetic field strength (
     

  
) 

C : Concentration far off the plate (
   

  )                                                                                                                                                                                                                                                                                    

wC  : Iso-solutal plate concentration (
   

  ) 

Ra : Ramped parameter 

C : Molar species concentration (
   

  )  

MD  : Mass diffusivity (
  

 
) 

pC  : Specific heat at constant pressure (
 

    
) 

TD  :  Molar thermal diffusivity (
 

     
)  

g  : Gravitation acceleration vector   

Gr  : Thermal Grashof number 

g  : Gravitational acceleration (
 

  ) 

Gm  : Solutal Grashof number  

J   : Current density vector (
 

  ) 

N : Radiation parameter  

p : Pressure (
 

  ) 

Pr : Prandtl number 

M : Magnetic parameter 

q   : Fluid velocity vector 
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rq   : Radiation heat flux vector 

rq   : Radiation heat flux (
 

  
) 

Sc  : Schmidt number 

0U : Plate velocity (
 

 
) 

Sr  : Soret number 

t    : Time ( ) 

T  : Fluid temperature ( ) 

T : Undisturbed temperature ( ) 

u  : X-component of fluid velocity (
 

 
) 

Greek Symbols: 

  : Coefficient of viscosity (
  

   
) 

  : Electrical conductivity (
 

 
) 

  : Fluid density (
  

  ) 

* : Stefan-Boltzmann constant (
 

     ) 

 : Fluid density far off the plate (
  

  ) 

  : Volumetric coefficient of thermal expansion (
 

 
) 

 : Thermal conductivity (
 

   
) 

  : Volumetric coefficient of solutal expansion (
 

     
) 

*   : Mean absorption constant (
 

 
) 
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  : Kinematic viscosity (
  

 
) 

Subscript: 

w  : Physical quantity at the plate 

  : Physical quantity far off the plate 
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(The functions are defined in Chapter I) 
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4.1 Introduction 

 Buoyancy force occurs due to density variation in fluid mixture. The flow generated 

by buoyancy force is termed as natural convection or free convection. Tornado, ocean 

currents, sea breeze, land breeze are some well-known environmental examples of natural 

convection. Mbledogu et al. (2007) considered the free convective compressible Boussinesq 

flow under the action of transverse magnetic field. Prasad et al. (2007) and Chandrakala 

(2010) studied the consequences of free convective flow past an impulsively started infinite 

vertical plate with uniform heat and mass flux in presence of thermal radiation. Ahmed et al. 

(2010), Makinde (2005), Samad and Rahman (2006) investigated the effect of natural 

convection through a porous vertical plate immersed in porous medium while Das and Jana 

(2010), Hazarika and Ahmed (2021) studied using non- porous vertical plate submersed in 

porous medium. Vedhanayagam et al. (1980), Martyneko et al. (1984), Kolar and Sastri 

(1988), Ramanaiah and Malarvizhi (1992), Carmago et al. (1996) studied intensively the 

behavior of free convective flow near vertical plate or surface under different conditions. 

 When two non-reacting and chemically different fluids are allowed to diffuse into 

each other at same temperature, the system generates a heat flux. It is the reverse phenomena 

of Soret effect. Effect of energy flux due to composition gradient in a chemical system is 

labeled as diffusion thermo effect or Dufour effect. This effect was discovered by noted 

Swiss scientist L Dufour in 1873. Eckert and Drake (1972) nicely illustrated this effect in 

their book. Kafousssias and Williams (1995) studied both Dufour and Soret effects in a 

mixed free- forced convective heat and mass transfer boundary layer flow problem. Jha and 

Ajibade (2011) investigated the influence of Dufour effect in a free convective heat and mass 

transfer flow in a vertical channel. Postelnicu (2004) examined consequences of both Soret 

and Dufour effects on a vertical surface embedded in porous medium. Ahmed et al. (2013) 

studied Dufour effect on a transient MHD flow past a uniformly moving porous plate with 

heat sink. Srinivasacharya et al. (2015) investigated roles of Soret and Dufour effects in a 

mixed convective heat and mass transfer problem along a wavy surface in porous medium. 

Ullah et al. (2017) studied unsteady mixed convective flow of Casson fluid over a non- 

linearly stretching sheet. 

 The purpose of the present investigation is to study the role of Dufour effect in a free 

convective flow past an impulsively started vertical moving plate with uniform heat and mass 

flux. Reviewing the existing literature, we found that no attempt has been made to study this 
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kind of problem. The governing equations are first normalized and they are solved by 

applying closed form of Laplace transform technique. Effect of different flow parameters, 

viz.,  Prandtl number, Schmidt number, Dufour number, thermal Grashoff number and solutal 

Grahof number on concentration field, temperature field, velocity field, plate concentration, 

plate temperature and skin friction are discussed exclusively with the help of graphs.  

4.2 Mathematical Analysis 

The governing equations of the convective flow of an electrically conducting, 

incompressible, viscous fluid having constant mass diffusivity and thermal diffusivity 

considering diffusion- thermo effect are 

Continuity equation: 

 0q   (4.1) 

Momentum equation: 

   2q
q q p g q

t
  
 

       
 

 (4.2) 

Energy equation: 

   2 2M T
p

s

D KT
C q T T C

t C


 

 
       

 (4.3) 

Species continuity equation: 

   2

M

C
q C D C

t


   


 (4.4) 

Equation of state as per Boussinesq approximation: 

    1 T T C C     
        (4.5) 

We consider natural convective heat and mass transfer flow of an electrically 

conducting, incompressible and viscous fluid past a semi- infinite vertical plate with uniform 

heat and mass flux. Let us introduce a rectangular co- ordinate system  , , ,x y z t    with X 

axis vertically upwards, Y axis normal to the plate directed towards fluid region and Z axis 
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along the width of the plate. Let  ,0,0q u be the fluid velocity at the point  , , ,x y z t    in 

the fluid. 

Initially, the plate and the neighbouring fluid were at rest with uniform temperature 

T and concentration C at all points in the fluid. At time 0t  , the plate suddenly starts to 

move in its own plane with speed 
0U along X axis. Instantaneously, the temperature and 

concentration of the plate are raised to 
q


  and 

j

D


  respectively, which are thereafter 

regarded as constant. 

The foremost assumptions to idealize the mathematical model are- 

I. Except the variation in density in the buoyancy force term, all the fluid properties 

are constant. 

II. Dissipation of energy due to friction and Joule heating are negligible. 

III. Flow is one- dimensional which is parallel to the plate. 

IV. Plate is electrically non- conducting. 

V. No external electric field is applied for which the polarization voltage is 

negligible. 
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Figure 4.1: Flow Configuration 
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Equation (4.1) yields, 

 

 

0

. ., ,

u

x

i e u u y t






   

 (4.6) 

Equation (4.2) reduces to 

 
2

2
ˆ ˆ ˆ ˆ ˆ0

u p p u
i i j gi i

t x y y
  

     
             

 (4.7) 

Equation (4.7) gives 

 
2

2

u p u
g

t x y
  

   
   

    
 (4.8) 

and 

 0
p

y


 


 (4.9) 

Equation (4.9) shows that pressure near the plate and pressure far away from the plate 

is same along the normal to the plate.  

 For fluid region far away from the plate, equation (4.8) takes the form 

 0
p

g
x




  


 (4.10) 

Eliminating 
p

x




 from (4.8) and (4.10), we get 

  
2

2

u u
g

t y
   

  
  

  
 (4.11) 

Now, (4.5) gives, 

    T T C C      
        (4.12) 

Putting value of (4.12) in (4.11), 
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u u
T T C C g

t y
     

  
        

 

    
2

2
. .,

u u
i e g T T g C C

t y
   

  
    

  
 (4.13) 

Equation (4.3) yields, 

 
2 2

2 2

M T
p

s

D KT T C
C

t y C y


 
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 

    
 (4.14) 

Equation (4.4) yields, 

 
2

2M

C C
D

t y

 


  
 (4.15) 

The relevant initial and boundary conditions are: 

 0

0 : 0, , ; 0

0 : , , ; 0

: 0, , ; 0

M

y u T T C C t

T q C j
y u U t

y y D

y u T T C C t



 

 

       


  
         

   
       

 (4.16) 

To normalize the mathematical model of the problem, we introduce the following 

non- dimensional quantities- 

 
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  
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    
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The non- dimensional governing equations are 

 
2

2

u u
Gr Gm

t y
 

 
  

 
 (4.17) 

 
2 2

2 2

1

Pr
Du

t y y

    
 

  
 (4.18) 
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2

2

1

t Sc y

  


 
 (4.19) 

Subject to the initial and boundary conditions: 

 

0 : 0, 0, 0; 0

0 : 1, 1, 1; 0

: 0, 0, 0; 0

y u t

y u t
y y

y u t
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 
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       

  
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 (4.20) 

4.3 Method of Solution 

 Taking Laplace transform of the equations (4.19), (4.18) and (4.17) respectively, we 

get the following ordinary differential equations: 
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2

1 d
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   (4.21) 
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Subject to the initial and boundary conditions: 
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 (4.24) 

Solving equations from (4.21) to (4.23) subject to the conditions (4.24) and taking 

inverse Laplace transform of the solutions, the expression for concentration field   , 

temperature field  , and velocity field u are as follows: 
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 (4.27) 

4.4 Plate Concentration 

 Plate concentration is determined as 

  
2
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t
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
  (4.28) 

4.5 Plate Temperature 

 Plate temperature is found as 
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 (4.29) 

4.6 Sherwood Number 

The mass flux wM  at the plate 0y   is characterized by Fick‟s law of diffusion is given by 
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Equation (4.30) gives  
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In (4.31), 
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 is known as the Sherwood number which is related to the 

rate of mass transfer at the plate. 

Equation (4.31) yields 

 1Sh   (4.32) 
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4.7 Nusselt Number 

The heat flux 
*q  at the plate 0y  is determined by Fourier‟s law of conduction is given by 

 * *

0
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T
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y





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 (4.33) 

where 
* 3

*

0 *

16

3

T
 


   is the modified thermal conductivity. 

Equation (4.33) yields 
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Where 
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 is called the Nusselt number which is correlated to the rate of 

heat transfer at the plate. 

Equation (4.34) gives, 

 1Nu   (4.35) 

4.8 Skin Friction 

The viscous drag at the plate 0y   is specified by Newton‟s law of viscosity is given by 
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Equation (4.36) gives 
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In (4.37), 
2

0U





  is denoted as the skin friction or coefficient of friction which is 

associated with the rate of momentum transfer at the plate. 

Equation (4.38) yields, 
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 (4.38) 

4.9 Results and Discussion 

 The effects of various flow parameters associated with the flow and transport 

properties are examined by assigning some specific values to variables and parameters. The 

results are demonstrated from Figures 4.2 to 4.22. 

Figure 4.2 and Figure 4.3 display the variation of concentration field versus normal 

co- ordinate y. Figure 4.2 admits that concentration field keeps on increasing with time. 

Figure 4.3 reveals that there is a comprehensive fall in concentration field for increasing 

Schmidt number. Thus, higher mass diffusivity raises concentration field.  

Figures 4.4 to 4.7 illustrate the variation of temperature field versus normal co- 

ordinate y. Figure 4.4 suggests that temperature field escalates with time. Figure 4.5 shows 

that temperature field upsurges in a thin layer adjacent to the plate and after that its behaviour 

changes as Schmidt number increases. In other words higher mass diffusivity first decreases 

temperature field in a thin layer adjacent to the plate and after that its behaviour reverses. 

Temperature field decelerates with increasing Prandtl number as shown in Figure 4.6. 

Accordingly, temperature field accelerates with higher thermal diffusivity. Figure 4.7 gives 

us an idea that temperature field rises with upsurge in Dufour number. 

Figures 4.8 to 4.13 depict the variation of velocity field versus normal co- ordinate y. 

Figure 4.8 reveals that as time progresses, velocity field increases in a small layer adjoining 

the plate but decreases afterwards. Velocity field declines in a thin layer adjacent to the plate 

and its behaviour reverses as Schmidt number rises as shown in Figure 4.9. Velocity field 

falls in a slim layer neighbouring the plate and its nature takes reverse turn outside the layer 

as Prandtl number upsurges as demonstrated in Figure 4.10. Figure 4.11 exhibits that with 

increasing Dufour number, velocity field hikes near the plate, but after a critical point its 

nature reverses. Velocity rises with increment in both thermal Grashof number and solutal 

Grashof number but after a critical point its behaviour changes as noticed in Figure 4.12 and 

Figure 4.13 respectively.  
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Figure 4.14 displays the variation of plate concentration versus time t. It confirms that 

plate concentration decreases as Schmidt number increases. Thus, higher mass diffusivity 

raises plate concentration.  

Figures 4.15 to 4.17 exhibit the variation of plate temperature versus time t.  Figure 

4.15 shows that plate temperature raises with increment in Schmidt number. In other words, 

we can say that higher mass diffusivity lowers temperature field. Enhancement in Prandtl 

number declines plate temperature as observed in Figure 4.16. Consequently, higher thermal 

diffusivity hikes plate temperature. Figure 4.17 admits that plate temperature rises 

considerably as Dufour number upsurges. 

Variations of skin friction versus time t are demonstrated from Figures 4.18 to 4.22. 

Figure 4.18 admits that skin friction lowers as Schmidt number hikes. Thus, skin friction 

hikes as mass diffusivity increases. Skin friction falls substantially with increasing Prandtl 

number as observed in Figure 4.19. In other words, we can say that, enhancement in thermal 

diffusivity leads to rise in skin friction. Skin friction lifts with increment in Dufour number as 

noticed in Figure 4.20. There is a comprehensive rise in skin friction for increasing thermal 

Grashof number and solutal Grashof number as observed in Figure 4.21 and Figure 4.22 

respectively. 

4.10 Conclusions 

The prominent outcomes of the present work are as follows:  

i. Both concentration field and temperature field accelerates with time. 

ii. Velocity field upsurges in a thin layer adjacent to the plate with increment in Dufour 

number, thermal Grashof number and solutal Grashof number and thereafter its 

behavior reverses. 

iii. Higher mass diffusivity increases plate concentration but decreases plate temperature. 

iv. There is a considerable fall in skin friction for higher Schmidt number and Prandtl 

number. 
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Figure 4.2: Concentration field versus for different t and Sc=0.22 

Figure 4.3: Concentration field versus for different Sc and t = 0.1 

Figure 4.4: Temperature field versus for different t 

and Sc=0.22, Pr=0.71, Du=0.5 
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Figure 4.5: Temperature field versus for different Sc 

and t=0.1, Pr=0.71, Du=3 

Figure 4.6: Temperature field versus for different Pr 

and t=0.1, Sc=0.22, Du=0.5 

Figure 4.7: Temperature field versus for different Du 

and t=0.1, Sc=0.22, Pr=0.71 
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Figure 4.8: Velocity field versus y for different t 

and Sc=0.22, Pr=0.71, Du=0.5, Gr=5, Gm=5 

Figure 4.9: Velocity field versus y for different Sc 

and t=0.5, Pr=0.71, Du=0.5, Gr=5, Gm=5 

Figure 4.10: Velocity field versus y for different Pr 

and t=0.3, Sc=0.22, Du=0.5, Gr=10, Gm=3 
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Figure 4.11: Velocity field versus y for different Du 

and t=0.3, Sc=0.22, Pr=0.71, Gr=5, Gm=1 

Figure 4.12: Velocity field versus y for different Gr 

and t=0.3, Sc=0.22, Pr=0.71, Du=0.5, Gm=3 

Figure 4.13: Velocity field versus y for different Gm 

and t=0.3, Sc=0.22, Pr=0.71, Du=0.5, Gr=1 
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Figure 4.14: Plate concentration versus t for different Sc 

Figure 4.15: Plate temperature versus t for different Sc 

and Pr=0.71, Du=5 

Figure 4.16: Plate temperature versus t for different Pr 

and Sc=0.22, Du=1 
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Figure 4.17: Plate temperature versus t for different Du 

and Sc=0.22, Pr=0.71 

Figure 4.18: Skin friction versus t for different Sc 

and Pr=0.71, Du=0.5, Gr=1, Gm=1 

Figure 4.19: Skin friction versus t for different Pr 

and Sc=0.22, Du=0.5, Gr=1, Gm=1 
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Figure 4.20: Skin friction versus t for different Du 

and Sc=0.22, Pr=0.71, Gr=1, Gm=1 

Figure 4.21: Skin friction versus t for different Gr 

and Sc=0.22, Pr=0.71, Du=0.5, Gm=1 

Figure 4.22: Skin friction versus t for different Gm 

and Sc=0.22, Pr=0.71, Du=0.5, Gr=1 
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Nomenclature:   

C : Molar species concentration 

pC  : Specific heat at constant pressure 

sC  : Concentration susceptibility 

C : Concentration far away from the plate  

wC  : Iso-solutal plate concentration 

MD  : Mass diffusivity 

Du  : Dufour number 

g  : Gravitation acceleration vector  

g  : Gravitational acceleration  

Gr  : Thermal Grashof number 

Gm  : Solutal Grashof number 

TK  : Thermal diffusion ratio 

p : Pressure 

Pr : Prandtl number 

q   : Fluid velocity vector 

Sc  : Schmidt number 

Sr  : Soret number 

t     : Time 

T  : Fluid temperature 

T : Undisturbed temperature 
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wT : Wall temperature 

u  : X-component of fluid velocity 

0U : Plate velocity 

Greek Symbols: 

  : Coefficient of viscosity 

  : Fluid density 

 : Fluid density far away from the plate 

 : Thermal conductivity 

*   : Mean absorption constant 

 : Thermal conductivity 

  : Volumetric coefficient of thermal expansion 

  : Volumetric coefficient of solutal expansion  

  : Kinematic viscosity 

Subscripts: 

w  : Refers to physical quantity at the plate 

  : Refers to physical quantity far away from the plate 
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(The functions are defined in Chapter I)
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Dufour Effect on Unsteady MHD Flow Past a Vertical Plate 

Embedded in Porous Medium with Ramped Temperature 

 

 

Published in Scientific Reports, Nature (Scopus, SCIE), 12(1), 2022. 

 

 

  



129 

 

5.1 Introduction 

 The branch of physics that deals with the interaction of the magnetic field with 

electrically conducting fluid are termed as Magnetohydrodynamics (MHD). Saltwater, liquid 

metals, plasmas, electrolytes are some common examples of such fluids. Noted Swiss 

scientist Hannes Alfven (1942) initiated the field of MHD for which he received the Noble 

prize in physics in the year 1970. But, due to substantial contributions from other authors like 

Cowling (1957), Shercliff (1965), Ferraro and Plumpton (1966), Roberts (1967), Crammer 

and Pai (1973), etc., MHD is at present form. There are several applications of MHD in 

modern technologies. Geophysical and astrophysical applications of MHD are nicely 

elaborated by Dormy and Nunez (2007). Dynamo, motor, fusion reactors, dispersion of 

metals, metallurgy, etc. are some engineering applications of MHD. Aeronautical 

applications of MHD were studied exclusively by Li et al. (2017). Farrokhi et al. (2019) 

studied biomedical applications of MHD. 

 Change in fluid temperature and species concentration generates density variation in 

the fluid mixture. This variation develops buoyancy forces that act on the fluid. The flow 

produced due to the buoyancy force is termed free convection or natural convection. Manh et 

al. (2020), Das and Ahmed (1992), Kafoussias (1992), Kumar and Singh (2013), etc. studied 

the effect of free convection on various MHD problems. 

 The porous medium contains holes or voids that are filled with solid particles which 

let the fluid pass through it. The mechanism of porous flow finds its applications in inkjet 

printing, nuclear waste disposal, electro-chemistry, combustion technology, etc. Dwivedi et 

al. (2018) studied MHD flow through the vertical channel in a porous medium while Raju et 

al. (2014) observed the MHD flow through horizontal channel taking viscous dissipation and 

Joule heating into account. Free convection in the porous media was investigated by Helmy 

(1998), Raju and Varma (2011), Pattnaik and Biswal (2015), Sinha et al. (2017), Basha and 

Nagarathna (2019). 

 Radiation is a form of heat transfer by electromagnetic waves. Many environmental 

and industrial procedures encounters with radiative convective flows.  Flows of this kind take 

crucial role in space technology and high temperature activities.  This influence many authors 

to perform model research on free convection with thermal radiation in several hydrodynamic 

and magnetohydrodynamic problems under various physical and geometrical conditions. 
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Mbeldogu et al. (2007), Makinde (2005), Samad and Rahman (2006), Orhan and Ahmet 

(2008), Prasad et al. (2006), Ahmed and Dutta (2014), Takhar et al. (1996), Seth et al. (2016), 

Balla and Naikoti (2015), Siviah et al. (2012) are some worth mentioning researchers in this 

area. 

 The effect of chemical reaction carries a great practical significance in heat and mass 

transfer problems. So, many researchers studied applications of chemical reaction in different 

MHD flow problems. Apelblat (1982) investigated chemical reaction effect in a mass transfer 

problem with axial diffusion. Mahapatra et al. (2010) examined the effects of chemical 

reaction in a free convective flow in a porous media surrounded by a vertical surface. 

Andersson et al. (1994) and Takhar et al. (2000) considered the diffusion of a chemically 

reactive species from a stretching sheet while Ganesan and Rani (2000) studied the diffusion 

of chemically reactive species through a vertical cylinder. Muthucumaraswamy and Ganesan 

(2001), Kandasamy et al. (2005), Raptis and Perdikis (2006), etc. investigated the effects of 

chemical reaction in various MHD problems. Arifuzzaman et al. (2018) studied chemically 

reactive and naturally convective high speed MHD flow through an oscillating vertical 

porous plate. 

 If two non-reacting and chemically different fluids are allowed to diffuse into each 

other at the same temperature, the system produces a heat flux. Effect of flux due to 

composition gradient is defined as Dufour effect or diffusion thermo effect. Renowned Swiss 

scientist L. Dufour discovered this effect in 1873. This effect is nicely elaborated by Eckert 

and Drake (1972). Swetha et al. (2015) analyzed Dufour and radiation effects on a free 

convective flow in a porous medium. Reddy et al. (2016) studied both Soret and Dufour 

effects of an MHD flow past a moving vertical plate immersed in a porous medium taking 

Hall current and rotating system into account. Oyekunle and Agunbiade (2020) explored the 

consequences of the Dufour and Soret effect of MHD flow on an inclined magnetic field. 

Kumaresan et al. (2018) analytically investigated the Dufour effect on unsteady free 

convective flow past an accelerated vertical plate. Vijaya Kumar et al. (2013) studied Dufour 

and radiation effects on a free convective MHD flow past an infinite vertical plate in presence 

of chemical reaction. Shateyi et al. (2010) studied the effects of Soret, Dufour, Hall current 

and radiation of a mixed convective flow in a porous medium. Postelnicu (2004) examined 

the consequences of both Soret and Dufour effects on a vertical surface embedded in a porous 

medium. 
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 The present investigation aims to analyse the role of the diffusion thermo effect in a 

free convective, radiative, and chemically reacting fluid in a porous medium with arbitrary 

ramped temperature. Reviewing the existing literature, we found that no work has been done 

taking Dufour effect and ramped temperature with arbitrary characteristic time 

simultaneously in a flow past an exponentially started vertical plate. The governing equations 

are first converted to non-dimensional partial differential equations using some dimensionless 

quantities. A closed-form of the Laplace transform technique is adopted to solve the 

equations. Effects of different flow parameters like Prandtl number, Schmidt number, 

magnetic parameter, thermal Grashof number, solutal Grashof number, Dufour number, 

chemical reaction parameter, radiation parameter, porosity parameter, etc. on temperature 

field, concentration field, velocity field, Nusselt number, Sherwood number, and skin friction 

are discussed graphically. The obtained results are also verified with previously published 

work.  

5.2 Mathematical Analysis 

 Equations that govern  the convective flow of an electrically conducting, 

incompressible, viscous, chemically reactive, and radiating fluid in a porous medium in 

presence of a magnetic field having constant mass diffusivity and thermal diffusivity taking 

the diffusion- thermo effect into account are 

Continuity equation: 

 0q   (5.1) 

Magnetic field continuity equation: 

 0B   (5.2) 

Ohm‟s Law: 

  J E q B    (5.3) 

Momentum equation: 

   2

*

q q
q q p J B g q

t K


  
 

          
 

 (5.4) 
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Energy equation: 

   2 2M T
p r

S

D KT
C q T T q C

t C


 

 
        

 (5.5) 

Species continuity equation: 

    2

M

C
q C D C K C C

t



     


 (5.6) 

Equation of state as per Boussinesq approximation: 

    1 T T C C     
        (5.7) 

The radiation heat flux as per Rosseland approximation is given by  

 
*

4

*

4

3
rq T




  

 

Now, 

  
44 3 44 3 , 1T T T T TT T as T T           

So, 

 
* 3

2

*

16

3
r

T
q T




     

Therefore, Energy equation (5.5) reduces to 

  
* 3

2 2 2

*

16

3

M T
p

S

T D KT
C q T T T C

t C

 
 


 

         
 (5.8) 

We now consider a transient MHD free convection flow of a viscous incompressible 

electrically conducting fluid through a porous medium past a semi-infinite vertical plate in 

presence of a uniform magnetic field applied normal to the plate, directed into the fluid 

region. Initially, the plate and the surrounding fluid were at rest with uniform temperature T

and concentration C at all points in the fluid. At time 0t  , the plate is exponentially 

accelerated with velocity a t

oU e
 

. The plate temperature is instantaneously elevated to
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 
0

w

t
T T T

t
 


  , for 00 t t  , and thereafter wT when 0t t  . The concentration is raised to 

wC  and maintained thereafter. 

 To idealize the mathematical model, we enforce the following constraints- 

I. Except the variation in density in the buoyancy force term, all the fluid properties 

are constant. 

II. Energy dissipation occurring from friction and Joule heating is negligible. 

III. Compared to applied magnetic field, induced magnetic field is negligible. 

IV. Flow is one- dimensional which is parallel to the plate. 

V. The plate is electrically insulating. 

VI. Polarization voltage is negligible because no external electric field is applied. 

 

 

 

 

 

 

 

 

 

Figure 5.1: Flow configuration 

 We now consider a tri- rectangular Cartesian co-ordinate system  , , ,x y z t     with X 

axis vertically upwards along the plate, Y axis normal to the plate directed into the fluid 

region, and Z axis along the width of the plate as displayed in Fig1. Let  ,0,0q u be the 

fluid velocity and  00, ,0B B be the magnetic induction vector at the point  , , ,x y z t     in 

the fluid. 

X 

𝐵   

Y 

Z 

O 

𝑔  

𝑈0 
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Equation (5.1) yields, 

 

 

0

. ., ,

u

x

i e u u y t






   

 (5.9) 

Equation (5.2) is trivially satisfied by  00, ,0B B  

Equation (5.4) reduces to 

 
2

2

0 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ0

*

u p p u u
i i j gi B u i i i

t x y y K


   

      
               

 (5.10) 

Equation (5.10) gives 

 
2

2

0 2 *

u p u u
g B u

t x y K


   

    
     

    
 (5.11) 

And 

 0
p

y


 


 (5.12) 

 Equation (5.12) shows that pressure near the plate and pressure far away from the 

plate are the same along the normal to the plate.  

 For fluid region far away from the plate, equation (5.11) takes the form 

 0
p

g
x




  


 (5.13) 

Eliminating 
p

x




 from (5.11) and (5.13), we get, 

  
2

2

0 2 *

u u u
g B u

t y K


    

   
    

  
 (5.14) 

Now, (5.7) gives, 

    T T C C      
        (5.15) 

Putting value of (5.15) in (5.14), 
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    
2

2

0 2 *

u u u
T T C C g B u

t y K


      

   
          

 

    
2 2

2
. .,

*

oB uu u u
i e g T T g C C

t y K


   


 

   
      

  
 (5.16) 

Equation (5.8) yields, 

 
* 32 2 2

2 * 2 2

16

3

M T
p

S

T D KT T T C
C

t y y C y

 
 


   

  
      

 (5.17) 

Equation (5.6) becomes, 

  
2

2M

C C
D K C C

t y


 
  

  
 (5.18) 

The relevant initial and boundary conditions are: 

  

0

0

0

0

0, , : 0; 0

, : 0, 0

: 0;0

: 0;

0, , : ; 0
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w
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u T T C C y t

u U e C C y t

t
T T T T y t t

t

T T y t t

u T T C C y t

 

 

 

 

        


      
 

      

   


       

 (5.19) 

For the sake of normalization of the mathematical model of the problem, we introduce 

the following non-dimensional quantities- 

 

 
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The non- dimensional governing equations are 
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2

12

u u
Gr Gm M u

t y
 

 
   

 
 (5.20) 

 
2 2

2 2Pr
Du

t y y

     
 

  
 (5.21) 

 
2

2

1
K

t Sc y

 


 
 

 
 (5.22) 

Subject to the initial and boundary conditions 

 1

1

1

0, 0, 0 : 0; 0

, 1: 0, 0

: 0;0

1: 0;
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 

      


    


    

  


     

 (5.23) 

5.3 Method of Solution 

 On taking Laplace transform of the equations (5.22), (5.21), and (5.20) respectively, 

we get the following equations: 

 
2

2

1 d
s K

Sc dy


    (5.24) 

 
2 2

2 2Pr

d d
s Du

dy dy

 



   (5.25) 

 
2

12

d u
su Gr Gm M u

dy
      (5.26) 

Subject to the initial and boundary conditions: 
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2 1 1
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y e u
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 

 

 
     

 
    

 (5.27) 
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 Solving equations from (5.24) to (5.26) subject to the conditions (5.27) and taking 

inverse Laplace transform of the solutions, the expression for temperature field , 

concentration field , and velocity field u are as follows: 

 1   (5.28) 

 
1,1 1,2 1,3

2,1 2,2 2,3

: Pr

: Pr

Sc

Sc

  


  

   
 

   
 (5.29) 

 

1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5

3,1 3,2 3,3 3,4 3,5

4,1 4,2 4,3 4,4 4,5

5,1 5,2 5,3 5,4 5,5

: Pr , 1,Pr

: Pr , 1

: Pr , 1

: Pr , 1

: Pr , 1,Pr

u u u u u Sc Sc

u u u u u Sc

u u u u u u Sc
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         


      
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       


      

         

 (5.30) 

5.4 Nusselt Number 

The heat flux 
*q  at the plate 0y  is obtained by Fourier‟s law of conduction is given by 

 
* *

0

0y

T
q

y

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 (5.31) 

where 
* 3

*

0 *
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3
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 


   is the modified thermal conductivity. 

Equation (5.31) yields 
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is called the Nusselt number which is 

concerned with the rate of heat transfer at the plate. 

Equation (5.32) gives, 
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 (5.33) 
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5.5 Sherwood Number 

The mass flux wM  at the plate 0y   is specified by Fick‟s law of diffusion is given by 

 
0

w M

y

C
M D

y



   

 (5.34) 

Equation (5.34) gives  
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 (5.35) 

In (5.35), 
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

 is called the Sherwood number which is associated with the 

rate of mass transfer at the plate. 

Equation (5.35) yields 

 1Sh    (5.36) 

5.6 Skin Friction 

The viscous drag at the plate 0y   is determined by Newton‟s law of viscosity is given by 

 
0y

u

y
 


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 (5.37) 

Equation (5.37) gives 
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y

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 (5.38) 

In (5.38), 
2

0U





  is called the skin friction or coefficient of friction which is associated 

with the rate of momentum transfer at the plate. 

Equation (5.38) yields, 
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 (5.39) 

5.7 Results and Discussion 

 The effects of various flow parameters associated with the flow and transport 

properties are examined by assigning some specific values. The results are demonstrated 

from Figures 5.2 to 5.35. 

Figures 5.2 to 5.4 display the variation of concentration field versus normal co-

ordinate y. Figure 5.2 admits that the concentration field keeps on increasing with time. 

Figure 5.3 reveals that there is a comprehensive fall in the concentration field for increasing 

chemical reaction parameter. A faster chemical reaction consumes chemical substances 

present in the fluid rapidly and as a result concentration of the fluid declines. The behaviour 

of concentration profiles for various fluids such as hydrogen (Sc=0.22), helium (Sc=0.30), 

water vapour (Sc=0.60) and ammonia (Sc=0.78) are demonstrated in Figure 5.4. It suggests 

that a higher Schmidt number lowers the concentration field. Thus higher mass diffusivity 

hikes the concentration field. 

Figures 5.5 to 5.10 illustrate the variation of temperature field versus normal co-

ordinate y. Figure 5.5 suggests that the temperature field escalates with time. Figure 5.6 

shows that the temperature field upsurges with increment in chemical reaction parameter. 

Increasing chemical reaction parameter upsurges collision between fluid molecules and as a 

result temperature of fluid hikes. Figure 5.7 displays that increasing the Dufour number hikes 

temperature field. An increment in the Dufour number indicates a comprehensive rise in 

concentration gradient over temperature gradient. Hence, increasing concentration gradient 

upsurges the temperature field. Figure 5.8 suggests that the temperature field elevates with 

uplift in Schmidt number. Thus, the temperature field decreases with increasing mass 

diffusivity. The temperature field decelerates with increasing radiation parameter as noticed 

in Figure 5.9. It is in agreement with the fact that radiation tends to decline temperature. The 

nature of temperature profiles for various fluids such as oxygen (Pr=0.60), air (Pr=0.71), 

ammonia (Pr=1.38) etc. are demonstrated in Figure 5.10. It shows that the temperature field 
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falls with ascending values of the Prandtl number. This informs that the temperature field 

accelerates with higher thermal diffusivity. 

Figures 5.11 to 5.20 depict the variation of velocity field versus normal co-ordinate y. 

Figure 5.11 reveals that as time progresses, the velocity field increases. Figure 5.12 admits 

that the velocity field declines considerably as the Dufour number rises. Consequently, a 

large concentration gradient relative to the temperature gradient results in a dip in the velocity 

field. Figure 5.13 shows that velocity reduces with increasing chemical reaction parameter. 

This is because increasing chemical reaction parameter accelerates the process of collision 

between fluid molecules and as a result, kinetic energy is lost. Velocity falls with increasing 

magnetic parameter as noticed in Figure 5.14. Application of transverse magnetic field 

produces a resistive force known as Lorentz force, which slows down fluid velocity. Figure 

5.15 exhibits that increasing Schmidt number decrease velocity field. Thus, high mass 

diffusivity escalates fluid velocity. Velocity field upsurges in a thin layer adjacent to the plate 

and its nature take reverse turn outside the layer as thermal Grashof number upsurges as 

demonstrated in Figure 5.16. So, thermal buoyancy force hikes velocity in a small layer 

surrounding the plate but lowers velocity outside the layer. Velocity rises with increment in 

solutal Grashof number as noticed in Figure 5.17. Thus, solutal buoyancy force upsurges 

velocity.  Hence higher mass diffusivity raises velocity field but increasing thermal 

diffusivity reduces velocity. Increasing porosity parameter means the fluid gets more free 

space to flow. As a result fluid velocity hikes. This phenomenon is reflected in Figure 5.18. 

Increasing radiation parameter accelerates fluid velocity as observed in Figure 5.19. The 

reason behind it is that when the radiation increases, chemical bonding between the fluid 

molecules becomes weak so that velocity hikes. Figure 5.20 shows that ascending values of 

Prandtl number uplift velocity. Thus, higher thermal diffusivity diminishes velocity. 

Figures 5.21 and 5.22 demonstrate the variation of Sherwood number versus time t. 

Sherwood number increases with increment in chemical reaction parameter as noticed in 

Figure 5.11. From Figure 5.22, it is observed that increasing Schmidt number upsurges 

Sherwood number. This result establishes the fact that higher mass diffusivity accelerates the 

process of mass transfer from the plate to the fluid. 

Figures 5.23 to 5.27 exhibit the variation of Nusselt number versus time t.  Nusselt 

number increases for a small time but decreases thereafter for increasing radiation parameter 

as noticed in Figure 5.23. Thus, radiation increases the rate of heat transfer from the plate to 
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the fluid for a small time and decreases afterward. Figure 5.24 shows that the Nusselt number 

hikes for a small time but declines thereafter with ascending values of the Prandtl number. 

So, higher thermal diffusivity lessens the rate of heat transfer for a small time but increases as 

time progresses. From Figure 5.25 and Figure 5.27, it is observed that the Nusselt number 

declines for a small time but upsurges thereafter with increment in Dufour number and 

Schmidt number respectively. Figure 5.26 show that higher chemical reaction parameter 

hikes Nusselt number. Increasing chemical reaction parameter suggests a hike in heat 

generation. So, the process of heat transfer is accelerated. 

Variations of skin friction versus time t are demonstrated from Figures 5.28 to 5.35. 

Figure 5.28 admits that there is a comprehensive rise in skin friction as Dufour number hikes. 

Thus, the concentration gradient generates more frictional resistance compared to the 

temperature gradient. Skin friction uplifts with increment in thermal Grashof number as 

noticed in Figure 5.29. Thus, thermal buoyancy force hikes frictional resistivity at the plate. 

Skin friction hikes with an upsurge in both chemical reaction parameter and porosity 

parameter as shown in Figure 5.30 and Figure 5.31 respectively. Figure 5.32 reveals that 

increasing magnetic parameter raises skin friction. Hence Lorentz force accelerates frictional 

resistivity of the plate. Higher Schmidt number hikes skin friction as displayed in Figure 

5.33. Therefore, increasing mass diffusivity lowers the frictional resistance of the plate. 

Figure 5.34 and Figure 5.35 give us an idea that enhancement in radiation parameter and 

Prandtl number lowers skin friction. 

Numerical values of Nusselt number Nu against different time t, Dufour number Du 

and radiation parameter are analyzed in Table 5.1. It is observed that for a small time, the 

Nusselt number decreases with increment in Dufour number but its behaviour reverses as 

time progresses. An opposite behaviour is noticed for increasing radiation parameter. This 

asserts that a high concentration gradient decelerates but radiation accelerates the process of 

heat transfer from the plate to the fluid. This is in complete agreement with our results from 

Figure 5.23 and Figure 5.25. Numerical values of skin friction  against different time t, 

chemical reaction parameter K, radiation parameter N, Dufour number Du, thermal Grashof 

number Gr and solutal Grashof number Gm are demonstrated in Table 5.2. It is noticed that 

ascending values of time, chemical reaction parameter, Dufour number and thermal Grashof 

number hike skin friction whereas ascending values of radiation parameter and solutal 

Grashof number declines the value of skin friction. This is in accordance with our result from 

Figure 5.30, Figure 5.28, Figure 5.29 and Figure 5.34 respectively. 
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5.8 Comparison of Results 

To check the validity of our result, we have compared one of our results with Seth et 

al. (2016b) who considered the unsteady free convective MHD flow of a chemically reactive, 

radiative flow past a moving vertical plate immersed in a porous medium. In absence of 

Dufour and chemical reaction effects and for vanishing Schmidt number (i.e., Du=0, K=0 

and Sc=0), expression of temperature field of the present problem is 

 1,1 
 

Figure 5.36 and Figure 5.37 display the temperature field versus normal co- ordinate y 

for different 1t obtained by Seth et al. (2016b) and present author respectively. Both figures 

uniquely expresses the fact that temperature field declines for ascending values of critical 

time of rampedness. Hence, an excellent agreement of results between present author and 

Seth et al. (2016b) is observed. 

Table 5.3 display the variation of Sherwood number for different K, Sc and t obtained 

by Asogwa et al. (2021), Seth et al. (2014), Kataria and Patel (2019) and present author 

respectively. This table indicates that current study is in line with the results obtained by 

these authors. 

5.9 Conclusions 

 The prime purpose of the present work was to study exclusively the effects of 

radiation, chemical reaction and Diffusion thermo effect of an unsteady MHD flow past a 

moving vertical plate embedded in a porous medium with ramped temperature. The 

behavioural study of flow and transport characteristics under the action of different 

parameters was carried out with aid of graphs.  The prominent outcomes of the present work 

are as follows: 

i. Velocity field, concentration field, and temperature field accelerate with time. 

ii. Fluid gets thinner rapidly as chemical reaction parameter and Schmidt number hikes. 

iii. Radiation and Lorentz force resists fluid velocity. 

iv. Higher mass diffusivity results in a fall in Nusselt Number, Sherwood number, and 

skin friction. 

v. Radiation slows down rate of momentum transfer. 
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 The solution of the present work also validates with the previous result obtained by 

Seth et al. (2016b), Asogwa et al. (2021), Seth et al. (2014) and Kataria and Patel (2019) in 

particular case.  
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Figure 5.2: Concentration field versus for different t and Sc=0.22, K=1 

Figure 5.3: Concentration field versus for different K and t=1, Sc=0.22 

Figure 5.4: Concentration field versus for different Sc and t=1, K=0.22 
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Figure 5.5: Temperature field versus y for different t 

and Sc=0.22, K=0.5, N=5, Pr =0.71, Du=1, =0.5 

Figure 5.6: Temperature field versus y for different K 

and t=0.8, Sc=0.22, N=4, Pr =0.71, Du=1, =0.5 

Figure 5.7: Temperature field versus y for different Du 

and t=1, Sc=0.22, K=0.5, N=5,   Pr =0.71, =0.5 
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Figure 5.8: Temperature field versus y for different 

Sc and t=1, K=0.5, N=2, Pr =0.71, Du=1, =0.5 

Figure 5.9: Temperature field versus y for different N 

and t=1, Sc=0.22, K=0.5, Pr =0.71, Du=1, =0.5 

Figure 5.10: Temperature field versus y for different Pr 

and t=1, Sc=0.22, K=0.5, N =3, Du=1, =0.5 
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Figure 5.11: Velocity field versus y for different t and Sc=0.22, K=2, 

N=5, Pr =0.71, Du=0.5, M=0.5, K*=1, Gr=1, Gm=10, a=1, =0.5 

Figure 5.12: Velocity field versus y for different Du and t=1, Sc=0.22, 

K=2, N=5, Pr =0.71, M=0.5, K*=1, Gr=1, Gm=5, a=1, =0.5 

Figure 5.13: Velocity field versus y for different K and t=1, Sc=0.22, 

N=5, Pr =0.71, Du=0.5, M=0.5, K*=1, Gr=1, Gm=10, a=1, =0.5 
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Figure 5.14: Velocity field versus y for different M and t=1, Sc=0.22, 

K=3, N=5, Pr =0.71, Du=0.5, K*=2, Gr=1, Gm=20, a=1, =0.5 

Figure 5.15: Velocity field versus y for different Sc and t=1, K=3, 

N=5, Pr =0.71, Du=0.5, M=0.5, K*=1, Gr=1, Gm=10, a=1, =0.5 

Figure 5.16: Velocity field versus y for different Gr and t=1, Sc=0.22, 

K=2, N=5, Pr =0.71, Du=0.5, M=0.5, K*=1, Gm=10, a=1, =0.5 
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Figure 5.17: Velocity field versus y for different Gm and t=1, Sc=0.22, 

K=2, N=5, Pr =0.71, Du=0.5, M=0.5, K*=1, Gr=1, a=1, =0.5 

Figure 5.18: Velocity field versus y for different K* and t=1, Sc=0.22, 

K=3, N=5, Pr =0.71, Du=0.5, M=0.5, Gr=1, Gm=20, a=1, =0.5 

Figure 5.19: Velocity field versus y for different N and t=1, Sc=0.22, 

K=3, Pr =0.71, Du=0.5, M=0.5, K*=1, Gr=1, Gm=5, a=1, =0.5 
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Figure 5.20: Velocity field versus y for different Pr and t=1, Sc=0.22, 

K=3, N=5, Du=0.5, M=0.5, K*=1, Gr=1, Gm=5, a=1, =0.5 

Figure 5.21: Sherwood number versus t for different K and Sc=0.22 

Figure 5.22: Sherwood number versus t for different Sc and K=1 
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Figure 5.23: Nusselt number versus t for different N 

and Sc=0.22, Pr=0.71, Du=0.5, K=0.5, =0.5 

Figure 5.24: Nusselt number versus t for different Pr 

and Sc=0.22, N=3, Du=0.5, K=0.5, =0.5 

Figure 5.25: Nusselt number versus t for different Du and 

Sc=0.22, N=5, Pr=0.71, K=0.5, =0.5 
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Figure 5.26: Nusselt number versus t for different K 

and Sc=0.22, N=5, Pr=0.71, Du=0.5, =0.5 

Figure 5.27: Nusselt number versus t for different Sc 

and N=5, Pr=0.71, Du=0.5, K=0.5, =0.5 

Figure 5.28: Skin friction versus t for different Du and Sc=0.22, 

K=1, N=5, Pr=0.71, M=0.5, K*=5, Gr=1, Gm=5, a=1, =0.5 
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Figure 5.29: Skin friction versus t for different Gr and Sc=0.22, 

K=1, N=5, Pr=0.71, Du=0.5, M=0.5, K*=5, Gm=5, a=1, =0.5 

Figure 5.30: Skin friction versus t for different K and Sc=0.22, 

N=5, Pr=0.71, Du=1, M=0.5, K*=3, Gr=1, Gm=5, a=1, =0.5 

Figure 5.31: Skin friction versus t for different K* and Sc=0.22, 

K=1, N=3, Pr=0.71, Du=0.5, M=0.5, Gr=1, Gm=10, a=1, =0.5 
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Figure 5.32: Skin friction versus t for different M and Sc=0.22, 

K=2, N=2, Pr=0.71, Du=0.5, K*=1, Gr=1, Gm=1, a=1, =0.5 

Figure 5.33: Skin friction versus t for different Sc and K=2, N=3, 

Pr=0.71, M=0.5, Du=0.5, K*=3, Gr=1, Gm=5, a=1, =0.5 

Figure 5.34: Skin friction versus t for different N and Sc=0.22, 

K=1, Pr=0.71, M=0.5, Du=0.5, K*=5, Gr=5, Gm=10, a=1, =0.5 
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Figure 5.35: Skin friction versus t for different Pr and Sc=0.22, 

K=3, N=5, M=0.5, Du=0.1, K*=5, Gr=5, Gm=5, a=1, =0.5 

Figure 5.36: Scanned graph of temperature field versus y for different 

 when t=1.2, N=2, Pr=0.71 drawn by Seth et al. (2016b) 

Figure 5.37: Temperature field versus y for different  when 

t=1.2, N=2, Pr=0.71, Sc=0, Du=0, K=0 drawn by present author 
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t Du N Nu 

0.5 0.5 5 1.1016 

0.5 1 5 1.0184 

0.5 1.5 5 0.9302 

2 0.5 5 0.3564 

2 1 5 0.3926 

2 1.5 5 0.4288 

0.5 0.5 2 0.9218 

0.5 0.5 3 1.0204 

0.5 0.5 4 1.0730 

2 0.5 2 0.3753 

2 0.5 3 0.3565 

2 0.5 4 0.3552 

 

 

t K N Du Gr Gm   

1  

1 

 

5 

 

0.5 

 

1 

 

1 

9.1499 

1.5 13.2425 

2 20.4193 

 

1 

2  

5 

 

0.5 

 

1 

 

1 

9.9629 

3 11.2420 

5 16.8475 

 

1 

 

1 

2  

0.5 

 

1 

 

1 

9.7355 

5 9.1499 

7 8.9585 

 

1 

 

1 

 

5 

1  

1 

 

1 

10.1642 

2 14.2214 

3 18.2786 

 

1 

 

1 

 

5 

 

0.5 

1  

1 

9.1499 

3 21.4736 

5 33.7974 

 

1 

 

1 

 

5 

 

0.5 

 

1 

1 9.1499 

3 7.9392 

5 6.7286 

 

 

 

 

Table 5.1: Computational values of Nusselt number for 

various t, Du and N when Pr=0.71, Sc=0.22, K=0.5, =0.5 

Table 5.2: Computational values of skin friction for various t, K, N, Du, 

Gr and Gm when Pr=0.71, Sc=0.22, a=1, M=0.5, K*=0.5, =0.5 
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K Sc t Asogwa et. al 

(2021) 

(isothermal 

condition) 

 

Seth et. al 

(2014) 

(isothermal 

condition) 

 

Kataria and Patel 

(2019) 

(isothermal 

condition) 

 

Present study 

(isothermal 

condition) 

 

5 0.66 0.4 1.8320 1.8320 1.8320 1.8320 

5.1 0.66 0.4 1.8493 1.8493 1.8493 1.8493 

5.2 0.66 0.4 1.8664 1.8664 1.8664 1.8664 

5 0.7 0.4 1.8867 1.8867 1.8867 1.8867 

5 0.8 0.4 2.0170 2.0170 2.0170 2.0170 

5 0.66 0.5 1.8238 1.8238 1.8238 1.8238 

5 0.66 0.6 1.8201 1.8201 1.8201 1.8201 

5 1.24 0.4 2.5111 - - 2.5117 

5 2.01 0.4 3.1971 - - 3.1971 

  

  

 

  

Table 5.3: Comparison of computational values of Sherwood number for various K, Sc and t 

obtained by Asogwa et.al (2021), Seth et. Al (2014), Kataria and Patel (2019) and present author 
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Nomenclature: 

a : Surface acceleration parameter  

B : Magnetic flux density  

0B : Strength of the applied magnetic field (
     

  
)  

C : Molar species concentration (
   

  )  

pC : Specific heat at constant pressure (
 

    
) 

sC  : Concentration susceptibility 

C : Concentration far away from the plate (
   

  )  

wC : Concentration at the plate (
   

  ) 

MD : Mass diffusivity (
  

 
)  

Du  : Dufour number 

g : Gravitation acceleration vector  

g : Gravitational acceleration (
 

  )  

Gr : Thermal Grashof number 

Gm : Solutal Grashof number  

TK  : Thermal diffusion ratio 

*K : Porosity parameter 

J : Current density vector (
 

  ) 

K  : Chemical reaction rate (
   

   
) 

K : Chemical reaction parameter 
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M : Magnetic parameter 

N : Radiation parameter 

p : Pressure (
 

  ) 

Pr : Prandtl number 

q  : Fluid velocity vector 

rq : Radiation heat flux vector 

rq : Radiation heat flux (
 

  ) 

Sc : Schmidt number 

t   : Time ( ) 

0
t : Critical time for rampedness ( ) 

1t : Non- dimensional critical time for rampedness 

T : Fluid temperature ( ) 

wT : Temperature at the plate ( ) 

T : Undisturbed temperature ( ) 

/u : X-component of fluid velocity (
 

 
) 

0U : Plate velocity (
 

 
) 

Greek Symbols: 

 : Coefficient of viscosity (
  

   
) 

 : Electrical conductivity (
 

 
) 

* : Stefan-Boltzmann constant (
 

     
) 
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 : Fluid density (
  

  
)  

 : Fluid density far away from the plate (
  

  ) 

 : Thermal conductivity (
 

   
) 

* : Mean absorption constant (
 

 
) 

 : Volumetric coefficient of thermal expansion (
 

 
) 

 : Volumetric coefficient of solutal expansion (
 

     
)  

 : Kinematic viscosity (
  

 
) 

Subscripts: 

w : Refers to physical quantity at the plate 

: Refers to physical quantity far away from the plate 
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(The functions are defined in Chapter I)
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6.1 Introduction 

 Magnetohydrodynamics (MHD) is the branch of physics associated with the 

interaction of electrically conducting fluids with a magnetic field. Plasmas, electrolytes, 

liquid metals, saltwater are some common examples of such fluids. Renowned Swiss scientist 

Hannes Alfven (1942) introduced the concept of MHD for which he received the Nobel Prize 

in 1970. But, MHD is at present form due to significant contributions from other authors like 

Cowling (1957), Shercliff (1965), Ferraro and Plumpton (1966), Roberts (1967), Crammer 

and Pai (1973), Davidson (2001) etc. Engineering applications of MHD include motor, 

dynamo, MHD generator, plasma confinement, cooling of liquid metals, nuclear reactors, etc. 

applications of MHD in biological systems were studied by Rashidi et al. (2017). Farrokhi et 

al. (2019) investigated biomedical applications of MHD. Besides these, MHD has vast 

applications in astrophysics, geophysics, chemical sciences, nanotechnology, etc. 

In a fluid mixture, density variation takes place due to changes in both species 

concentration and fluid temperature. This variation develops buoyancy force which acts on 

the fluid. The flow produced by this force is termed natural convection or free convection. 

Asimoni et al. (2017) studied free convective viscous MHD flow past a vertical plate. 

Bulinda et al. (2020) investigated the effect of MHD free convection over a vibrating bottom 

surface with Hall current. Sravan Kumar et al. (2020) examined the behavior of Lorentz force 

and viscous dissipation on unsteady nanofluid convection flow over an exponentially moving 

vertical plate. Anwar et al. (2020) investigated combined effects of ramped wall temperature 

and ramped wall velocity in a convective Maxwell fluid flow. 

The method of heat transfer through electromagnetic waves is termed radiation. 

Applications of radiative-convective heat transfer can be found in space technology, 

industrial and environmental processes, climate engineering, the human body, etc. Orhan and 

Ahmet (2008) studied the effect of radiation in MHD mixed convection flow about a 

permeable vertical plate. Pattnaik et al. (2017) analyzed the effect of radiation in an MHD 

flow in a porous medium past an exponentially accelerated inclined plate with variable 

temperature. Ahmed and Dutta (2014) obtained an analytical solution of an MHD transient 

flow problem past an infinite vertical plate with radiation and ramped wall temperature. Seth 

et al. (2017) considered MHD double-diffusive natural convective flow over an exponentially 

accelerated inclined plate. Seth and Sarkar (2015) investigated the impact of radiation, 

chemical reaction, and Hall current in a free convective MHD flow past a moving vertical 
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plate. Das et al. (2020) considered the combined effects of radiation and chemical reaction of 

Casson fluid over a stretching sheet in a porous medium. Das et al. (2019) studied the 

influence of rotational buoyancy force on a radiative convective MHD flow near a rotating 

plate. 

Medium containing pores or voids through which fluid passes through is called 

porous medium. Wood, Rubber, Sponge are some common examples of a porous medium. 

Fluid flow through a porous medium has significant application in combustion technology, 

nuclear waste disposal, drying of biological materials, etc. Megahed (1984) obtained exact 

solution of unsteady MHD flow through porous medium while Raghunath et al. (2020) 

discussed unsteady MHD flow through a porous medium bounded by two vertical porous 

plates.  Acharya et al. (2014) studied unsteady convective MHD flow in porous medium past 

a vertical porous plate with heat source and variable temperature. Sinha et al. (2017) 

considered MHD free convective flow through a porous medium past a vertical plate with 

ramped wall temperature. Venkateswarlu and Makinde (2018) studied MHD slip flow with 

radiative heat and mass transfer over an inclined plate immersed in a porous medium.  

The chemical reaction effect draws the attention of many researchers due to its great 

practical significance in many technological, industrial and natural processes. Jonnadula et al. 

(2015) observed the outcome of radiation and chemical reaction in an MHD flow over a 

stretching surface. The chemical reaction effect in an MHD flow due to rotating disk in the 

porous medium was studied by Hayat et al. (2017). Zigta (2019) observed the effects of 

radiation, chemical reaction, and viscous dissipation in an unsteady MHD flow in a porous 

medium. Seth and Sarkar (2015) investigated the impact of Hall current, chemical reaction, 

and radiation in MHD free convective flow past a moving vertical plate. Eid and Makinde 

(2018) studied the effect of solar radiation on a nanofluid flow in a porous medium with 

chemically reactive species. Rajesh and Chamkha (2014) investigated the effects of radiation, 

chemical reaction and ramped wall temperature in an unsteady two dimensional flow. 

Heat absorption/ generation carry great importance in different free convective MHD 

problems. Srinivasa and Eswara (2016) discussed the consequences of heat generation on an 

MHD free convection flow from an isothermal cone. Rajput and Kumar (2017) studied the 

heat absorption effect on an MHD flow over a plate with variable wall temperature. 

Nandkeolyar and Das (2014) considered MHD free convection flow of heat-absorbing dusty 

fluid past a flat plate with ramped wall temperature. Consequences of Hall current and heat 
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absorption in an MHD flow past an oscillating vertical plate in a porous medium were studied 

by Rajput and Kanaujia (2019). Nandkeolyar et al. (2013) obtained the exact solution of an 

unsteady MHD free convection flow past a flat plate considering the heat absorption effect.  

When both solutal and thermal convection simultaneously takes place in a fluid 

mixture, then mass flux is produced by temperature gradient and concentration gradient. 

Effect of mass flux under temperature gradient is termed as thermal diffusion effect or Soret 

effect or Ludwing- Soret effect. Carl Ludwing observed and reported about this effect in 

1856. Later, Charles Soret analyzed the effect in 1879. Ahmed (2012) discussed the 

combined effects of Soret and radiation in a free convective MHD flow past an infinite 

vertical plate. Oyekunle and Agunbiade (2020) studied MHD slip flow over permeable 

vertical plate taking both Soret and Dufour effects into account. Sivaiah et al. (2012) 

considered thermal diffusion and radiation effects on an MHD free convective flow past an 

infinitely heated vertical plate in a porous medium. Effects of thermal diffusion and radiation 

in a chemically reactive MHD flow past a vertical plate were discussed by Raju et al. (2019). 

Mohanty et al. (2014) considered thermal diffusion, radiation, chemical reaction, and periodic 

permeability in a three-dimensional MHD flow in a porous medium. Anil Kumar et al. (2021) 

discussed how Soret, Dufour, Hall current, rotation, and radiation influence MHD free 

convective flow past an accelerated vertical plate. Influences of radiation, thermal diffusion, 

chemical reaction, and heat generation in an MHD flow over a vertical surface in a porous 

medium were investigated by Lavanya and Kesavaiah (2014). Pal and Mondal (2012) 

discussed Soret, Dufour, chemical reaction, and radiation effects in a mixed convection flow. 

Raju et al. (2017) investigated thermal diffusion, radiation, heat absorption, and chemical 

reaction effects in a mixed convective MHD flow. 

 The objective of the present investigation is to study and analyse the thermal diffusion 

effect in a radiative, free convective, chemically reacting unsteady MHD flow past a semi-

infinite vertical plate embedded in a porous medium with heat absorption and arbitrary 

ramped temperature. Equations governing the flow are converted to a set of non-dimensional 

partial differential equations with the help of some dimensionless variables and parameters. 

Solutions of these equations are obtained adopting a closed-form of Laplace transformation 

technique. Effects of various flow parameters such as Prandtl number, Schmidt number, heat 

absorption parameter, chemical reaction parameter, magnetic parameter, radiation parameter, 

porosity parameter, Soret number, thermal Grashof number, and solutal Grashof number on 

flow and transport characteristics are discussed graphically. Some results are compared with 
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previously published work. The present paper will be useful in designing cooling systems, 

flow meters, continuous casting of metals, MHD generators, etc. This paper will also help 

scientists and researchers in the field of heat and mass transfer. 

6.2 Mathematical Analysis 

 Governing equations of the convective flow of an incompressible, electrically 

conducting, viscous, chemically reacting, heat-absorbing, and radiating fluid in a porous 

medium in presence of a magnetic field having constant mass diffusivity and thermal 

diffusivity considering thermal diffusion effect are 

Continuity equation: 

 0q   (6.1) 

Magnetic field continuity equation: 

 0B   (6.2) 

Ohm‟s Law: 

  J E q B    (6.3) 

Momentum equation: 

   2

*

q q
q q p J B g q

t K


  

 
           

 (6.4) 

Energy equation: 

    2

p r

T
C q T T q T T

t
   

 
        

 (6.5) 

Species continuity equation: 

    2 2

M T

C
q C D C D T K C C

t



       


 (6.6) 

Equation of state as per Boussinesq approximation: 
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    1 T T C C     
        (6.7) 

For optically thick and non-gray fluid, the radiation heat flux as per Rosseland approximation 

is given by  
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Therefore, Energy equation (5) reduces to 

    
* 3

2 2

*
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3
p

TT
C q T T T T T

t


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
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

 
         

 (6.8) 

We, now consider a transient MHD free convective flow of a viscous incompressible 

electrically conducting fluid through a porous medium past a semi-infinite vertical plate in 

presence of a uniform magnetic field applied normal to the plate, directed into the fluid 

region. Initially, the plate and the surrounding fluid were at rest with uniform temperature T

and concentration C at all points in the fluid. At time 0t  , the plate is exponentially 

accelerated with velocity a t

oU e
 

. The plate temperature is instantly raised to  
0

w

t
T T T

t
   , 

for
00 t t  , and thereafter wT when 0t t . The concentration is raised to wC  and maintained 

thereafter. 

 To idealize the mathematical model of the problem, we impose the following 

constraints- 

I. All the fluid properties are constant except the variation in density in the 

buoyancy force term. 
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II. Viscous dissipation, Joule heating and porous medium resistance are negligible as 

velocity and velocity gradiant are small. 

III. The induced magnetic field in comparison to the applied magnetic field is 

negligible. 

IV. Flow is one- dimensional which is parallel to the plate. 

V. The plate is electrically non-conducting. 

VI. No external electric field is applied for which the polarization voltage is 

negligible. 

                                                                                   

                                                            

  

 

 

 

 

 

 

   

 

 

We now consider a tri- rectangular Cartesian co-ordinate system  , , ,x y z t with X axis 

vertically upwards along with the plate, Y axis normal to the plate directed into the fluid 

region, and Z axis along the width of the plate as shown in Figure 6.1. Let  ,0,0q u be the 

fluid velocity and  00, ,0B B be the magnetic induction vector at the point  , , ,x y z t  in 

the fluid. 

Equation (6.1) yields, 

 

 

0

. ., ,

u

x

i e u u y t






 

 (6.9) 
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Figure 6.1: Flow configuration 
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Equation (6.2) is trivially satisfied by  00, ,0B B  

Equation (6.4) reduces to 
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 (6.10) 

Equation (6.10) gives 
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 (6.11) 

And 

 0
p

y


 


 (6.12) 

Equation (6.12) shows that pressure near the plate and pressure far away from the 

plate are the same along the normal to the plate.  

 For fluid region far away from the plate, equation (6.11) takes the form 

 0
p

g
x




  


 (6.13) 

Eliminating 
p

x




 from (6.11) and (6.13), we get, 
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 (6.14) 

Now, (6.7) gives, 

    T T C C      
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Putting value of (6.15) in (6.14), 
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Equation (6.8) yields, 
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Equation (6.6) becomes, 

  
2 2

2 2M T

C C T
D D K C C

t y y


  
   

  
 (6.18) 

The relevant initial and boundary conditions are: 
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 (6.19) 

For the sake of normalization of the mathematical model of the problem, we introduce 

the following non-dimensional quantities- 
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The non- dimensional governing equations are 
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Subject to the initial and boundary conditions 
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 (6.23) 

6.3 Method of Solution 

 On taking Laplace transform of the equations (6.22), (6.21) and (6.20) respectively, 

we get the following equations: 
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Subject to the initial and boundary conditions: 
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 (6.27) 

 Solving equations from (6.24) to (6.26) subject to the conditions (6.27) and taking 

inverse Laplace transform of the solutions, the expression for temperature field , 

concentration field , and velocity field u are as follows: 
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 (6.30) 

6.4 Nusselt Number 

By Fourier‟s law of conduction, the heat flux 
*q  at the plate 0y  is given by 
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Here, 
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   is modified thermal conductivity. 

Equation (6.31) yields 
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 is termed as Nusselt 

number which is associated with the rate of heat transfer at the plate. 

Equation (6.32) gives, 
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6.5 Sherwood Number 

By Fick‟s law of diffusion, the mass flux wM  at the plate 0y   is given by 
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Equation (6.34) gives  
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 is labeled as the Sherwood number which determines the 

rate of mass transfer at the plate. 

Equation (6.35) yields 

 
1,1 1,2 1,3

2,1 2,2 2,3

: Pr

: Pr

Sh Sh Sh Sc
Sh

Sh Sh Sh Sc

   
 

   
 (6.36) 

6.6 Skin Friction 

By Newton‟s law of viscosity, the viscous drag at the plate 0y   is given by 
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Equation (6.37) gives 
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In (6.38), 
2

0U





  is entitled as the skin friction or coefficient of friction which gives the 

rate of momentum transfer at the plate. 

Equation (6.38) yields, 
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 (6.39) 

6.7 Results and Discussion 

 To analyse the effects of the physical parameters involved in the flow and transport 

characteristics, numerical calculations for temperature field, concentration field, velocity 

field, skin friction, Nusselt number, Sherwood number at the plate are carried out by 

assigning some specific values to the parameters and variables. 

 The numerically computed results are displayed from Figure 6.2 to Figure 6.26. 

Figures 6.2 to 6.4 display the variation of temperature field versus normal co-ordinate 

y. There is a comprehensive fall in the temperature field for increasing radiation parameter as 

displayed in Figure 6.2. Thus, radiation tends to reduce fluid temperature. This is in 

agreement with the result obtained by Nandkeolyar et al. (2013). Figure 6.3 depicts that 

ascending values of the heat absorption parameter lessens temperature. From Figure 6.4, it is 

observed that a higher Prandtl number declines fluid temperature. Thus, temperature hikes 

with increasing thermal diffusivity.  

Figures 6.5 to 6.8 show the variation of concentration field versus normal co-ordinate 

y. The concentration field declines with enhancement in chemical reaction parameter as 

depicted in Figure 6.5. Increasing chemical reaction devours chemical substances present in 

the fluid rapidly and as a result fluid concentration gets reduced. Ascending values of 

Schmidt number diminishes concentration field as noticed in Figure 6.6. Consequently, 

higher mass diffusivity upsurges the concentration field. This is in line with the result 

obtained by Seth and Sarkar (2015). Figure 6.7 admits that concentration hikes with growing 

Soret number. Thus, the temperature gradient increases the concentration field more rapidly 

compared to the concentration gradient. The concentration field escalates in a thin layer 

adjacent to the plate but declines outside with increment in radiation parameter as noticed in 

Figure 6.8. Thus, radiation hikes concentration in a small layer adjoining the plate but its 

behaviour takes a reverse turn outside the layer. 
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Figures 6.9 to 6.16 exhibit the variation of velocity field versus normal co-ordinate y. 

Figure 6.9 reveals that velocity field declines for ascending values of radiation parameter. 

Increasing radiation parameter decreases the fluid temperature and as a result, the flow 

becomes slow. Higher magnetic parameter reduces fluid velocity as displayed in Figure 6.10. 

The magnetic field, which is applied in the transverse direction to the flow, generates a 

resistive force known as Lorentz force, which drops fluid velocity. This agrees the result 

obtained by Sinha et al. (2017). Figure 6.11 asserts that there is a comprehensive fall in 

velocity field as chemical reaction parameter hikes. Increasing chemical reaction parameter 

enhances the process of collision between fluid molecules and as a result, kinetic energy is 

lost. Subsequently, fluid velocity declines. Ascending values of Prandtl number diminishes 

the velocity field as shown in Figure 6.12. Thus, higher thermal diffusivity hikes the velocity 

field. Figure 6.13 admits that fluid velocity falls rapidly as Schmidt number hikes. Hence, 

increment in mass diffusivity hikes velocity field. Growing porosity parameter means there is 

more free space in the system for the fluid to flow. Accordingly, the velocity of the fluid 

upsurges. This phenomenon is reflected in Figure 6.14. Ascending Soret number accelerates 

fluid flow as noticed in Figure 6.15. An increment in Soret number suggests an extensive rise 

in temperature gradient over the concentration gradient. . This gives us an idea that if the 

temperature gradient is higher than the concentration gradient, then fluid motion is 

accelerated. Increasing thermal Grashof number lifts velocity field as noticed in Figure 6.16. 

Thus, thermal buoyancy force escalates fluid velocity. 

Figures 6.17 and 6.18 depict the variation of Nusselt number versus time t. Nusselt 

number hikes for ascending values of radiation parameter as noticed in Figure 6.17. Hence, 

radiation amplifies the process of heat transfer from the plate to the fluid. Growing Prandtl 

number hikes Nusselt number as shown in Figure 6.18. Thus, higher thermal diffusivity 

declines the heat transfer process. 

Figures 6.19 to 6.22 illustrate the variation of Sherwood number versus time t. There 

is a comprehensive rise in Sherwood number for ascending values of chemical reaction 

parameter as shown in Figure 6.19. From Figure 6.20, it is observed that the Sherwood 

number lowers with rising values of the radiation parameter. Thus, radiation weakens the rate 

of mass transfer from the plate to the fluid. Sherwood number declines substantially for 

increasing values of Prandtl number as displayed in Figure 6.21. Hence, growing thermal 

diffusivity accelerates the process of mass transfer. Increasing Soret number reduces 
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Sherwood number as shown in Figure 6.22. So, a high concentration gradient compared to a 

low-temperature gradient quickens the process of mass transfer. 

Figures 6.23 to 6.26 illuminate the change in skin friction versus time t. Skin friction 

upsurges for a small time but reverses its behaviour afterward with increasing values of 

radiation parameters as observed in Figure 6.23. Increasing porosity parameter hikes skin 

friction for a small time but reduces thereafter as noticed in Figure 6.24. Figure 6.25 asserts 

that skin friction upsurges for a small time and reduces after that as Soret number hikes. 

Thus, growing temperature gradient hikes frictional resistivity for small-time but reduces 

afterward. Higher solutal Grashof number raises skin friction for small time but reverses its 

behavior as noticed in Figure 6.26. Thus, solutal buoyancy force first increase frictional 

resistivity for small time but decrease afterwards. 

6.8 Comparison of Result 

 To check the accuracy of our result, we have compared one of our results with Seth et 

al. (2016b) who considered the unsteady free convective MHD flow of a chemically reactive, 

radiative flow past a moving vertical plate submerged in a porous medium. In absence of the 

Soret effect (i.e., Sr=0), expression of concentration field of the present problem is 

 1   

Figure 6.27 and Figure 6.28 display the concentration field versus normal co-ordinate 

y for different chemical reaction parameter obtained by Seth et al. (2016b) and present 

authors respectively. Both figures uniquely express the fact that the concentration field 

declines for ascending values of chemical reaction parameter. Hence, an excellent agreement 

of results between the present authors and Seth et al. (2016b) is observed. 

6.9 Conclusions 

 The purpose of the present work is to study exclusively the effects of radiation, 

chemical reaction and thermal diffusion effect of an unsteady MHD flow past a moving 

vertical plate immersed in a porous medium with ramped temperature. The study of flow and 

transport characteristics under the action of different parameters was carried out with the help 

of graphs.  The leading outcomes of the present work are as follows: 

i. Radiation declines both temperature and velocity fields. 

ii. Increasing heat absorption process lowers the fluid temperature. 
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iii. Higher chemical reaction reduces both concentration and velocity profiles. 

iv. Lorentz force decelerates fluid velocity but hikes skin friction. 

v. Ascending Prandtl number upsurges Nusselt number but diminish Sherwood 

number.  
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Figure 6.2: Temperature field versus y for different N 

and t=1, Pr =0.71, Q=0.5, =0.5 

Figure 6.3: Temperature field versus y for different Q 

and t=1, Pr =0.71, N=5, =0.5 

Figure 6.4: Temperature field versus y for different Pr 

and t=1, N =5, Q=0.5, =0.5 
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Figure 6.5: Concentration field versus y for different K 

and t=1, N=5, Pr=0.71, Sc=0.22, Sr=0.5, Q=0.5, =0.5 

Figure 6.6: Concentration field versus y for different Sc 

and t=1, N=5, Pr=0.71, K=1, Sr=1, Q=0.5, =0.5 

Figure 6.7: Concentration field versus y for different Sr 

and t=1, N=5, Pr=0.71, K=1, Sc=0.22, Q=0.5, =0.5 
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Figure 6.8: Concentration field versus y for different N 

and t=1, Pr=0.71, K=1, Sc=0.22, Sr=10, Q=0.5, =0.5 

Figure 6.9: Velocity field versus y for different N and t=1, Pr=0.71, 

K=2, Sc=0.22, Sr=1, Q=5, M=1, K*=1, Gr=5, Gm=10, a=1, =0.5 

Figure 6.10: Velocity field versus y for different M and t=1, N=0.5, 

Pr=0.71, K=5, Sc=0.22, Sr=1, Q=5, K*=1, Gr=5, Gm=10, a=1, =0.5 
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Figure 6.11: Velocity field versus y for different K and t=1, N=0.5, 

Pr=0.71, Sc=0.22, Sr=1, Q=5, M=1, K*=1, Gr=5, Gm=10, a=1, =0.5 

Figure 6.12: Velocity field versus y for different Pr and t=1, N=0.1, 

K=2, Sc=0.22, Sr=1, Q=3, M=1, K*=1, Gr=30, Gm=10, a=1, =0.5 

Figure 6.13: Velocity field versus y for different Sc and t=1, N=5, 

K=2, Pr=0.71, Sr=1, Q=5, M=1, K*=1, Gr=5, Gm=20, a=1, =0.5 
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Figure 6.14: Velocity field versus y for different K* and t=1, N=0.5, 

K=5, Pr=0.71, Sc=0.22, Sr=1, Q=5, M=1, Gr=5, Gm=10, a=1, =0.5 

 

 

 

 

 

 

 

 

Figure 6.15: Velocity field versus y for different Sr and t=1, N=0.5, 

K=5, Pr=0.71, Sc=0.22, Q=5, M=1, K*=1, Gr=5, Gm=10, a=1, =0.5 

Figure 6.16: Velocity field versus y for different Sr and t=1, N=0.5, K=5, 

Pr=0.71, Sc=0.22, Q=5, M=1, K*=1, Gr=5, Gm=10, a=1, =0.5 
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Figure 6.17: Nusselt number versus t for different N 

and Pr=0.71, Q=0.5, =0.5 

 

 

 

 

 

 

 

 

Figure 6.18: Nusselt Number versus t for different Pr 

and N=5, Q=0.1, =0.5 

Figure 6.19: Sherwood Number versus t for different K 

and N=5, Pr=0.71, Sc=0.22, Sr=0.1, Q=0.5, =0.5 
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Figure 6.20: Sherwood Number versus t for different N 

and Pr=0.71, K=1, Sc=0.22, Sr=1, Q=0.5, =0.5 

 

 

 

 

 

 

 

 

Figure 6.21: Sherwood Number versus t for different Pr 

and N=1, K=1, Sc=0.22 Sr=0.5, Q=0.5, =0.5 

Figure 6.22: Sherwood Number versus t for different Sr 

and N=5, Pr=0.71, K=1, Sc=0.22, Q=0.5, =0.5 
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Figure 6.23: Skin friction versus t for different N and Pr=0.71, 

K=5, Sc=0.22, Sr=1, Q=2, M=1, K*=1, Gr=1, Gm=5, a=1, =0.5 

Figure 6.24: Skin friction versus t for different K* and N=1, Pr=0.71, 

K=5, Sc=0.22, Sr=1, Q=2, M=1, Gr=1, Gm=5, a=1, =0.5 

 

 

 

 

 

 Figure 6.25: Skin friction versus t for different Sr and N=1, Pr=0.71, 

K=5, Sc=0.22, Q=2, M=1, K*=1, Gr=1, Gm=5, a=1, =0.5 
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Figure 6.26: Skin friction versus t for different Gm and N=1, 

Pr=0.71, K=5, Sc=0.22, Sr=5, Q=2, M=1, K*=1, Gr=1, a=1, =0.5 

Figure 6.27: Scanned graph of concentration field versus y for 

different K when t=1.2, Sc=0.6 drawn by Seth et al. (2016b) 

Figure 6.28: Concentration field versus y for different K 

when t=1.2, Sc=0.6, Sr=0 drawn by author 
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Nomenclature 

a : Surface acceleration parameter  

*a : Absorption coefficient (
  

   
) 

B : Magnetic flux density  

0B : Strength of the applied magnetic field (
     

  
)  

C : Molar species concentration (
   

  
) 

pC : Specific heat at constant pressure (
 

    
) 

C : Concentration far away from the plate (
   

  ) 

wC : Concentration at the plate (
   

  ) 

MD : Mass diffusivity (
  

 
) 

TD  :  Molar thermal diffusivity (
 

     
) 

g : Gravitation acceleration vector  

g : Gravitational acceleration (
 

  
) 

Gr : Thermal Grashof number 

Gm : Solutal Grashof number  

TK  : Thermal diffusion ratio 

*K : Porosity parameter 

J : Current density vector (
 

  ) 

K  : Chemical reaction rate (
   

   
) 
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K : Chemical reaction parameter 

M : Magnetic parameter 

N : Radiation parameter 

p : Pressure (
 

  
) 

Pr : Prandtl number   

Q  : Heat absorption parameter 

q  : Fluid velocity vector 

rq : Radiation heat flux vector 

rq : Radiation heat flux (
 

  ) 

Sc : Schmidt number 

Sr  : Soret number 

t  : Time ( ) 

0
t : Critical time for rampedness ( ) 

1t : Non- dimensional critical time for rampedness 

T : Fluid temperature ( ) 

wT : Temperature at the plate ( ) 

T : Undisturbed temperature ( ) 

/u : X-component of fluid velocity (
 

 
) 

0U : Plate velocity (
 

 
) 
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Greek Symbols: 

 : Heat absorption rate (
 

 
) 

  : Magnetic diffusivity (
  

 
) 

 : Coefficient of viscosity (
  

   
) 

 : Electrical conductivity (
 

 
) 

* : Stefan-Boltzmann constant (
 

     
) 

 : Fluid density (
  

  ) 

 : Fluid density far away from the plate (
  

  ) 

 : Thermal conductivity (
 

   
) 

* : Mean absorption constant (
 

 
) 

 : Volumetric coefficient of thermal expansion (
 

 
) 

 : Volumetric coefficient of solutal expansion (
 

     
) 

 : Kinematic viscosity (
  

 
) 

Subscripts: 

w : Refers to physical quantity at the plate 

 : Refers to physical quantity far away from the plate 
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(The functions are defined in Chapter I)
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CHAPTER VII 

Influence of Thermal Diffusion on Unsteady MHD Free 

Convective, Chemically Reactive, and Radiating Flow Past a 

Semi-Infinite Inclined Moving Plate in a Porous Medium with 

Arbitrary Ramped Temperature 
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7.1 Introduction 

 Magnetohydrodynamics (MHD) is a branch of physics that is concerned with the 

interaction of the magnetic field with electrically conducting fluid. Some common examples 

of this kind of fluids are plasmas, liquid metals (e.g. mercury), electrolytes, etc. The basic 

principle behind MHD is that magnetic fields can induce a current in moving conducting 

fluids which in turn polarizes the fluid and as a result changes the magnetic field. Renowned 

Swiss scientist Hannes Alfven (1942) initiated the concept of MHD for which he received the 

prestigious Nobel Prize in physics in 1970. But, MHD is at present form due to valuable 

contributions from researchers like Cowling (1957), Shercliff (1965), Ferraro and Plumpton 

(1966), Roberts (1967), Crammer and Pai (1973) etc. There are numerous applications of 

MHD in present-day technologies. Many geophysical and astrophysical phenomena can be 

elaborated by the MHD principle. Engineering applications of MHD include Dynamo, motor, 

fusion reactors, dispersion of metals, metallurgy, MHD pumps, etc. Farrokhi et al. (2019) 

studied biomedical applications of MHD. 

 Density variation in fluid mixture arises owing to changes in fluid temperature and 

species concentration. This variation generates buoyancy force which acts on the fluid. The 

flow produced by these forces is termed free convection or natural convection. Ullah et al. 

(2021) studied two-dimensional unsteady MHD free convection flow over a vertical plate. 

Abdullah (2018) considered free convection MHD flow past an accelerated vertical plate with 

periodic temperature. Kumar and Singh (2013) studied unsteady MHD free convective flow 

over an infinite vertical moving plate. 

 The process of heat transfer through electromagnetic waves is defined as radiation. 

Radiative convective flow occurs in many environmental and industrial processes. This is the 

reason behind many model researches by researchers on free convection with thermal 

radiation under various physical and geometrical circumstances. Mbeldogu (2007) explored 

unsteady free convection on a compressible fluid past a moving vertical plate with radiative 

heat transfer. Orhan and Ahmet (2008) considered the effect of radiation on MHD mixed 

convection flow about a permeable vertical plate. Prasad et al. (2006) studied transient 

radiative free convection flow past an impulsively started vertical plate. Takhar et al. (1996) 

explored radiation effects on MHD free convection flow of a radiating gas. Ghaly (2002) 

studied radiation effects in certain MHD convection flows. Sheikholeslami et al. (2016) 

explored free convection and thermal radiation effects on Al2O3-H2O nanofluid. Ali et al. 
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(2013) considered radiation effects on MHD free convection flow along the vertical flat plate 

with Joule heating and heat generation. 

 A medium containing holes or voids so that fluid can pass through it is termed a 

porous medium. Sponge, wood, cork, etc. are some well-known examples of porous 

materials. The concept of the porous medium is widely used in many disciplines of applied 

science and chemistry such as filtration, solid mechanics, geomechanics, soil mechanics, bio 

remediating construction engineering, material science, fuel cells, etc. Sharma and Gupta 

(2018) studied the effect of radiation on MHD boundary layer flow along a stretching 

cylinder in a porous medium. Raju and Varma (2011) considered unsteady MHD Couette 

flow through a porous medium with periodic wall temperature. Pattnaik and Biswal (2015) 

obtained an analytical solution of an MHD free convection flow through a porous medium 

with time-dependent temperature and concentration. Sinha et al. (2017) explored MHD free 

convection flow through a porous medium past a vertical plate with ramped wall temperature. 

Basha and Nagarthna (2019) observed the process of heat and mass transfer on a free 

convective MHD flow through a porous medium past an infinite vertical plate. 

 The chemical reaction effect has great practical importance in many heat and mass 

transfer processes. Suresh et al (2019) studied the combined effects of chemical reaction and 

radiation on MHD flow along a moving vertical porous plate with heat source and suction. 

Rudraswamy and Gireesha (2014) explored the influences of both chemical reactions and 

thermal radiation in an MHD boundary layer flow. Mohamed and Abo- Daheb (2009) studied 

the effects of chemical reaction and heat generation in an MHD micropolar flow over a 

vertically moving porous plate in a porous medium while Babu et al. (2013) extended this 

work by considering viscous dissipation. Malathy et al (2017) considered both chemical 

reaction and radiation effects on an Oldroyd- B fluid in a porous medium. Lavanya (2020) 

examined the effects of chemical reaction, heat generation, and radiation on MHD convective 

flow over a porous plate through a porous medium. Sumathi et al. (2017) numerically 

investigated the effects of thermal radiation and chemical reaction on three-dimensional 

MHD flow in a porous medium. 

 When both thermal and solutal convection occurs simultaneously in a fluid mixture, 

then the relation between driving potential and flux becomes more complicated. The mass 

flux is generated by both temperature gradient and concentration gradient. The effect of mass 

flux under temperature gradient is termed the Soret effect or thermal diffusion effect. This 
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effect appears due to the flow of fluid molecules from the hotter region to the cooler region. 

This effect was first observed by Ludwing in 1859. But, the first experimental work was done 

by Swiss chemist Charles Soret in 1879. This effect has many applications in different 

chemical and physical processes, isotope separation, etc. Ahmed and Sarma (2021) studied 

the thermal diffusion effect in an MHD free convective flow past an impulsively started semi-

infinite vertical plate considering parabolic ramped conditions. Ahmed (2012) considered the 

combined effects of Soret and radiation in a free convective transient MHD flow past an 

infinite vertical plate. Sivaiah et al. (2012) considered the combined effects of thermal 

diffusion and radiation on unsteady MHD free convective flow past an infinite heated vertical 

plate in a porous medium. Narahari et al (2021) explored the effects of Soret, heat generation, 

and radiation in a free convective MHD flow past an infinite plate with oscillating 

temperature in a porous medium. 

 The objective of the present investigation is to analyse the problem of a free 

convective MHD flow past an exponentially accelerated inclined plate. Thermal radiation, 

chemical reaction, ramped wall temperature and thermal diffusion effects are also considered. 

The flow medium is taken to be porous. Reviewing the existing literature, we have not found 

any work considering all these effects simultaneously. The equations governing the flow are 

first normalized into non – dimensional equations and they are solved analytically using a 

closed form of the Laplace transformation technique. The effects of different flow parameters 

on the velocity field, temperature field, concentration field, Nusselt number, Sherwood 

number, and skin friction are analysed and results are discussed with the assistance of graphs 

and tables. 

7.2 Mathematical Analysis 

 Consider convective flow of an incompressible, electrically conducting, viscous, and 

radiating fluid in a porous medium in presence of a magnetic field having constant mass 

diffusivity and thermal diffusivity past an inclined plate considering the thermal diffusion 

effect with arbitrary ramped temperature past an infinite inclined plate. A uniform magnetic 

field applied normally to the plate, directed into the fluid region. Initially, the plate and the 

surrounding fluid were at rest with uniform temperature T and concentration C at all points 

in the fluid. At time 0t  , the plate is exponentially accelerated with velocity a t

oU e
 

. The 
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plate temperature is instantly raised to  
0

w

t
T T T

t
   , for

00 t t  , and thereafter wT when

0t t . The concentration is raised to wC  and maintained thereafter. 

 To idealize the mathematical model of the problem, we impose the following 

constraints- 

I. All the fluid properties are constant except for the variation in density in the 

buoyancy force term. 

II. Dissipation of energy due to friction and Joule heating is negligible. 

III. The induced magnetic field in comparison to the applied magnetic field is 

negligible. 

IV. Flow is one- dimensional and is parallel to the plate. 

V. The plate is electrically non-conducting. 

VI. No external electric field is applied for which the polarization voltage is 

negligible.                                                                                                      

              

 

 

 

                                                                                

   

 

 

  

 We now consider a tri- rectangular Cartesian co-ordinate system  , , ,x y z t  with X 

axis vertically upwards along the plate, Y axis normal to the plate directed into the fluid 

region, and Z axis along the width of the plate. Let  ,0,0q u be the fluid velocity and 

 00, ,0B B be the magnetic induction vector at the point  , , ,x y z t  in the fluid. Let the 

γ 

X 

𝐵    

Y 

Z 

O 

𝑔  

𝑈0 

 

Figure 7.1: Flow Geometry 
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plate is inclined to vertical direction by an angle γ. With the above assumptions, the 

governing equations for unsteady magnetohydrodynamic free convective  flow of an viscous, 

incompressible, electrically conducting,  chemically reactive, radiative  and optically thick 

fluid past an inclined plate through a porous medium are given by  
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2 2
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 Here, we have used Rosseland approximation method for the radiation heat flux term 

that appears in the energy equation. 
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The relevant initial and boundary conditions are: 
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For the sake of normalization of the mathematical model of the problem, we introduce 

the following non-dimensional quantities- 

 
 

 

 2*

0 0

* 3 3 2

0 0 0

, , , , , , ,
4

T w w

w

D T T g T TU Uu
Sr N u y y t t Gr a a

C C T U U U

  

   

 

 

 
      


 

 
  2

0

3 2

0 0

4
, , ,Pr , , , 1 ,

3

pw

w w M

Cg C C BT T C C
Gm M Sc

U T T C C U D N

    
 

 

  

 

  
        

 
 



199 

 

 
2

0
1 0 12

0

1
, ,

*

UK
K t t M M

U K




     

The non- dimensional governing equations are 
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Subject to the initial and boundary conditions 
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7.3 Method of Solution  

 On taking Laplace transform of the equations (7.7), (7.6) and (7.5) respectively, we 

get the following equations: 
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1 d d
s Sr K

Sc dy dy

 
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2
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cos cos

d u
su Gr Gm M u

dy
      (7.11) 

Subject to the initial and boundary conditions: 
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 (7.12) 

Solving equations from (7.9) to (7.11) subject to the conditions (7.12) and taking inverse 

Laplace transform of the solutions, the expression for temperature field , concentration field

 , and velocity field u are as follows: 

 
1

1

1

t
    (7.13) 
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 (7.15) 

7.4 Nusselt Number 

By Fourier‟s law of conduction, the heat flux 
*q  at the plate 0y  is given by 
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y



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 
 (7.16) 

Here, 
* 3

*

0 *

16

3

T
 


   is modified thermal conductivity. 

Equation (7.16) yields 
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

 is termed as Nusselt number which is associated with the rate of 

heat transfer at the plate. 
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Equation (7.17) gives, 

 
1

1

1
Nu

t
    (7.18) 

7.5 Sherwood Number 

By Fick‟s law of diffusion, the mass flux wM  at the plate 0y   is given by 
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 (7.19) 

Equation (7.19) gives  
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In (7.20), 
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 is labelled as the Sherwood number which determines the 

rate of mass transfer at the plate. 

Equation (7.20) yields 
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 (7.21) 

7.6 Skin Friction 

By Newton‟s law of viscosity, the viscous drag at the plate 0y   is given by 
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Equation (7.22) gives 
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In (7.23), 
2

0U





  is entitled as the skin friction or coefficient of friction which gives the 

rate of momentum transfer at the plate. 

Equation (7.23) yields, 
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 (7.24) 

7.7 Results and Discussion 

 The effects of various flow parameters on flow and transport characteristics are 

analyzed by assigning some specific values.  

Figures 7.2 to 7.5 display the variation of concentration field versus normal co- 

ordinate y. Figure 7.2 reveals that the concentration field keeps on decreasing with an 

increment in the chemical reaction parameter. Increasing chemical reaction absorbs the 

chemical substances present in the fluid quickly and as a result fluid concentration reduces. 

Figure 7.3 admits that concentration hikes in a thin layer adjacent to the plate but its behavior 

reverses outside the layer with ascending values of Prandtl number. This implies that higher 

thermal diffusivity decreases the fluid concentration in a slim layer adjoining the plate but its 

nature takes a reverse turn outside the layer. There is a comprehensive fall in fluid 

concentration with increasing Schmidt number as displayed in Figure 7.4. Thus, greater mass 

diffusivity hikes fluid concentration. Figure 7.5 suggests that ascending Soret number raises 

the concentration field. As the Soret number is the ratio of temperature gradient to 

concentration gradient, so rapid change in temperature hikes the concentration field speedily. 

 Figures 7.6 and 7.7 depict the variation of temperature field versus normal co- 

ordinate y. Figure 7.6 suggests that the temperature field falls with increasing radiation 

parameter. It establishes the fact that radiation tends to decline fluid temperature. The 

temperature field declines with an uplift in the Prandtl number as displayed in Figure 7.7. 

Thus, higher thermal diffusivity hikes fluid temperature. 



203 

 

 Figures 7.8 to 7.15 show the variation of velocity field versus normal co- ordinate y. 

Figure 7.8 displays that increasing chemical reaction parameter decline fluid velocity. The 

collision between fluid molecules increases as the chemical reaction parameter hikes. As a 

result, Kinetic energy is lost and velocity decelerates. There is a comprehensive rise in 

velocity field with increasing porosity parameter as shown in Figure 7.9. Ascending values of 

the porosity parameter indicate that there is more free space in the medium for the fluid to 

flow and accordingly, fluid velocity accelerates. Figure 7.10 admits that an increment in the 

Schmidt number diminishes fluid velocity. Consequently, higher mass diffusivity hikes fluid 

velocity. Growing Soret number escalates velocity field as noticed in Figure 7.11. This 

implies that a high-temperature gradient compared to concentration gradient results in a hike 

in the velocity field. Increasing thermal Grashof number lowers velocity as noticed in Figure 

7.12. Thus high thermal diffusivity leads to a dip in the velocity field. Figure 7.13 displays 

that ascending values of solutal Grashof number upsurges velocity field. This asserts to us 

that rising solutal diffusivity upsurges fluid velocity. Figure 7.14 demonstrate that growing 

magnetic parameter slow down fluid velocity. This is because the application of a transverse 

magnetic field generates a resistive force known as Lorentz force, which declines fluid 

velocity. Figure 7.15 displays that an increment in the angle of inclination diminishes 

velocity at all points of the fluid. 

Figures 7.16 and 7.17 demonstrate the variation of Nusselt number versus time t. 

Nusselt number hikes with increment in radiation parameter as noticed in Figure 7.16. Thus, 

radiation accelerates the process of heat transfer from the plate to the fluid. From Figure 7.17, 

it is observed that increasing the Prandtl number lifts the Nusselt number. This result 

establishes the fact that higher thermal diffusivity speed up the rate of heat transfer. 

 Figures 7.18 to 7.21 exhibit the variation of Sherwood number versus time t.  

Sherwood number decreases with ascending radiation parameter as noticed in Figure 7.18. 

This implies that radiation slows down the rate of mass transfer from the plate to the fluid. 

Figure 7.19 reveals that the Sherwood number declines with an increment in the Prandtl 

number. Thus, higher thermal diffusivity speeds up the rate of mass transfer time progresses. 

Increasing chemical reaction parameter lifts Sherwood number as displayed in Figure 7.20. It 

is noticed from Figure 7.21 that increasing Soret number declines the Sherwood number. This 

result agrees with the fact that a high concentration gradient compared to a temperature 

gradient accelerates the process of mass transfer from the plate to the fluid. 
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Numerical values of Skin friction τ against different time t, radiation parameter N, 

Soret number Sr and magnetic parameter M are demonstrated in Table 7.1. It is noticed that 

skin friction upsurges as time progresses. Skin friction hikes as radiation parameter increases. 

Thus, radiation accelerates the process of momentum transfer. Increasing Soret number hikes 

skin friction. This is because a high-temperature gradient exerts more drag force.  An 

opposite behavior is noticed for increasing magnetic parameter. This asserts that Lorentz 

force arising from the application of transverse magnetic field reduces the frictional 

resistance of the plate. 

Numerical values of skin friction  against different thermal Grashof number Gr,  

solutal Grashof number Gm, porosity parameter K*, and angle of inclination γ of the plate are 

analyzed in Table 7.2. It is observed that increasing thermal Grashof number hikes skin 

friction, but ascending solutal Grashof number lowers skin friction. Thus, thermal buoyancy 

force accelerates the process of momentum transfer, whereas, solutal buoyancy force shows 

its reverse character. Increasing porosity parameter hikes the viscous drag of the plate. The 

increasing angle of inclination of the plate hikes skin friction. The more the plate is inclined 

from the vertical, the more it experiences frictional resistance.  

7.8 Conclusions 

 A study of unsteady free convective hydromagnetic flow with heat and mass transfer 

of a viscous, incompressible, chemically reactive, electrically conducting, radiative and 

optically thick fluid past an exponentially accelerated moving inclined plate with variable 

ramped temperature embedded in a porous medium is carried out. The prominent outcomes 

of our investigation are: 

i. The chemical reaction effect lowers the concentration field. 

ii. Soret effect upsurges both concentration and velocity fields. 

iii. Radiation tends to decline temperature field. 

iv. Both Lorentz force and increasing angle of inclination slow down fluid velocity. 

v. Ascending Prandtl number uplifts Nusselt number, but diminishes Sherwood 

number. 

vi. Skin friction gets enhanced with increment in Soret number, porosity parameter, 

and angle of inclination. 
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Figure 7.2: Concentration field versus for different K 

and t=1, Sc=0.22, N=1, Pr=0.71, Sr=1, t1=0.5 

Figure 7.3: Concentration field versus for different Pr 

and t=1, Sc=0.22, K=0.5, N=1, Sr=10, t1=0.5 

Figure 7.4: Concentration field versus for different Sc 

and t=1, K=0.5, N=1, Pr=0.71, Sr=1, t1=0.5 
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Figure 7.5: Concentration field versus for different 

Sr and t=1, Sc=0.22, K=0.5, N=1, Pr=0.71, t1=0.5 

Figure 7.6: Temperature field versus y for different N 

and t=1, Pr =0.71, =0.5 

Figure 7.7: Temperature field versus y for different Pr 

and t=1, N=1, =0.5 
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Figure 7.8: Velocity field versus y for different K and t=1, Sc=0.22, 

N=1, Pr =7, Sr=1, M=1, K*=1, Gr=1, Gm=5, a=1, =0.5, γ=30
o
 

Figure 7.9: Velocity field versus y for different K* and t=1, Sc=0.22, 

K=2, N=1, Pr =7, Sr=1, M=1, Gr=1, Gm=5, a=1, =0.5, γ=30
o
 

Figure 7.10: Velocity field versus y for different Sc and t=1, K=2, 

N=1, Pr =7, Sr=1, M=1, K*=1, Gr=1, Gm=5, a=1, =0.5, γ=30
o
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Figure 7.11: Velocity field versus y for different Sr and t=1, Sc=0.22, 

K=2, N=1, Pr =7, M=1, K*=1, Gr=1, Gm=5, a=1, =0.5, γ=30
o
 

Figure 7.12: Velocity field versus y for different Gr and t=1, Sc=0.22, 

K=2, N=1, Pr =7, Sr=1, M=1, K*=1, Gm=1, a=1, =0.5, γ=30
o
 

Figure 7.13: Velocity field versus y for different Gm and t=1, Sc=0.22, 

K=2, N=1, Pr =7, Sr=1, M=1, K*=1, Gr=1, a=1, =0.5, γ=30
o
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Figure 7.14: Velocity field versus y for different M and t=1, Sc=0.22, 

K=2, N=1, Pr =7, Sr=1, K*=1, Gr=1, Gm=5, a=1, =0.5, γ=30
o
 

Figure 7.15: Velocity field versus y for different γ and t=1, Sc=0.22, 

K=2, N=1, Pr =7, Sr=1, M=1, K*=1, Gr=1,Gm=5, a=1, =0.5  

Figure 7.16: Nusselt number versus t for different N and Pr=0.71, t1=0.5 
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Figure 7.17: Nusselt number versus t for different Pr and N=1, t1=0.5 

Figure 7.18: Sherwood number versus t for different 

N and Pr=0.71, K=1, Sc=0.22, Sr=1, =0.5 

Figure 7.19: Sherwood number versus t for different 

Pr and N=1, K=1, Sc=0.22, Sr=1, =0.5 
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Figure 7.20: Sherwood number versus t for different K 

and N=1, Pr=0.71, Sc=0.22, Sr=1, =0.5 

Figure 7.21: Sherwood number versus t for different Sr 

and N=1, Pr=0.71, K=1, Sc=0.22, =0.5 
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t N Sr M   
 1  

1 

 

1 

 

1 

4.0964 

1.5 4.5736 

2 5.8117 

 

1 

1  

1 

 

1 

4.0964 

1.5 4.8201 

2 5.4763 

3 6.5574 

 

1 

 

1 

1  

1 

4.0964 

1.5 4.5147 

2 4.9385 

3 5.7806 

 

1 

 

5 

 0.1 6.3056 

0.5 4.6683 

1 4.0964 

 

 

Gr Gm K* γ   
1 5 1 30

o
 4.0964 

3 5.1495 

5 6.2027 

1 1 1 30
o
 5.0143 

3 4.5554 

5 4.0964 

1 5 

 

1 30
o
 4.0964 

2 4.6683 

5 5.6991 

1 5 1 30
o
 4.0964 

45
o
 4.2103 

60
o
 4.3588 

90
o
 4.7172 

 

 

 

 

  

Table 7.1: Computational values of skin friction for various t, N, Sr, and M 

when Pr=7, Sc=0.22, K=2, a=1, K*=1, Gr=1, Gm=5, γ=30
o 
, =0.5 

Table 7.2: Computational values of skin friction for various Gr, Gm, K* 

and γ when t=1, Pr=7, Sc=0.22, K=2, N=1, Sr=1, M=1, a=1, =0.5 
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Nomenclature 

a : Surface acceleration parameter  

*a : Absorption coefficient (
  

   
) 

B : Magnetic flux density  

0B : Strength of the applied magnetic field (
     

  )  

C : Molar species concentration (
   

  )  

pC : Specific heat at constant pressure (
 

    
) 

C : Concentration far away from the plate (
   

  
) 

wC : Concentration at the plate (
   

  ) 

MD : Mass diffusivity (
  

 
) 

TD  :  Molar thermal diffusivity (
 

     
) 

g : Gravitation acceleration vector  

g : Gravitational acceleration  (
 

  ) 

Gr : Thermal Grashof number 

Gm : Solutal Grashof number  

*K : Porosity parameter 

J : Current density vector (
 

  
) 

K  : Chemical reaction rate (
   

   
) 

K : Chemical reaction parameter 

M : Magnetic parameter 

N : Radiation parameter 

p : Pressure (
 

  ) 

Pr : Prandtl number   
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q  : Fluid velocity vector 

rq : Radiation heat flux vector 

rq : Radiation heat flux (
 

  ) 

Sc : Schmidt number 

Sr  : Soret number 

t  : Time ( ) 

0
t : Critical time for rampedness ( ) 

1t : Non- dimensional critical time for rampedness 

wT : Temperature at the plate ( ) 

T : Undisturbed temperature ( ) 

/u : X-component of fluid velocity (
 

 
) 

0U : Plate velocity (
 

 
) 

Greek Symbols: 

  : Angle of inclination to the vertical 

 : Coefficient of viscosity (
  

   
) 

 : Electrical conductivity (
 

 
) 

* : Stefan-Boltzmann constant (
 

     
) 

 : Fluid density (
  

  ) 

 : Fluid density far away from the plate (
  

  ) 

 : Thermal conductivity (
 

   
) 

* : Mean absorption constant (
 

 
) 

 : Volumetric coefficient of thermal expansion (
 

 
) 
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 : Volumetric coefficient of solutal expansion (
 

     
)  

 : Kinematic viscosity (
  

 
) 

Subscripts: 

w : Refers to physical quantity at the plate 

: Refers to physical quantity far away from the plate 
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(The functions are defined in Chapter I)
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CHAPTER VIII 

Induced Magnetic Field and Thermal Diffusion Effects on 

Unsteady MHD Free Convective, Chemically Reactive and 

Radiating Flow Past a Semi-Infinite Moving Vertical Plate with 

Arbitrary Ramped Temperature 
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8.1 Introduction 

 The branch of physical science which is associated with the interaction of electrically 

conducting fluid with a magnetic field is called magnetohydrodynamics (MHD). Plasmas, 

electrolytes, liquid metals (for example, mercury) are some well-known conducting fluids. 

Interaction of a magnetic field with electrically conducting fluids generates current which 

polarizes the fluid and subsequently it perturbs the magnetic field. Fundamental concepts of 

MHD were given by Hannes Alfven (1942) and for that, he received the Nobel Prize in 

physics in 1970. Cowling (1957), Roberts (1967), Shercliff (1965), Ferraro and Plumpton 

(1966), Crammer and Pai (1973) are some pioneer researchers in the field of MHD. 

Numerous modern-day technologies are based on the application of the MHD principle. 

Liquid metal cooling of nuclear reactors, continuous casting process of metals, magnetic 

behavior of plasmas in fusion reactors, principles of dynamo and motor etc. are some 

common applications of MHD in engineering. Astrophysical applications of MHD include 

solar wind, Sunspots, etc. 

 Difference in both fluid temperature and species concentration develops density 

variation in the fluid mixture. This difference produces buoyancy force which acts on the 

fluid. The flow generated by this force is called natural convection or free convection. Das et 

al. (2012) studied free convection in an MHD Couette flow in presence of heat generation. 

Agrawal et al. (1989) investigated the effects of free convection on an MHD flow past a 

vibrating infinite vertical cylinder. Afsana et al. (2021) explored MHD-free convection of 

power-law fluids. 

 Radiation is a powerful form of heat transfer as it does not necessarily need a material 

medium for heat transfer, unlike conduction and convection. Many industrial and 

environmental processes encounter convective flow with radiation. This persuades many 

researchers to carry on model research on radiative free convection flow under different 

physical and geometrical restrictions. Anwar et al. (2020) obtained exact solutions of 

unsteady MHD radiative free convective flow. Goud et al. (2020) observed the influence of 

MHD-free convection across a vertical surface in a porous medium with radiation. Ibrahim et 

al. (2013) considered the effects of radiation on MHD-free convection flow of a micropolar 

fluid. 
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 Many heat and mass transfer processes encounter chemical reactions. So, this effect 

has great practical importance in many MHD flow investigations. Reddy et al. (2020) 

examined how chemical reaction affects radiative MHD flow near the stagnation point. 

Zhang et al. (2022) investigated the chemical reaction effect on Newtonian MHD flow on a 

vertical plate immersed in a porous medium. Joshna et al. (2022) obtained an analytical 

solution of chemically reactive MHD flow in a vertical surface filled with porous materials.  

Narayana et al. (2022) investigated chemical reaction on MHD couple-stress nanoliquid flow. 

Patil et al. (2022) studied thermally and chemically reactive MHD Maxwell nanofluid flow 

past an inclined permeable stretching surface. Reddy et al. (2021) studied impact of chemical 

reaction on free convective MHD flow through a porous medium. Sarma and Ahmed (2022b) 

explored the combined effects of radiation, Dufour, and chemical reaction on a free 

convective MHD flow past a vertical plate in a porous medium. 

 When both thermal and solutal convection occurs at the same time, then mass flux is 

produced by both temperature gradient and concentration gradient. The effect of mass flux 

occurring from temperature gradient is called the thermal diffusion effect or Soret effect. This 

effect takes place due to the movement of fluid molecules from a hotter region to a cooler 

region. Though this effect was first observed by Ludwing in 1859, but first experimental 

research was carried out by Charles Soret in 1879. Many chemical and physical processes, 

isotope separation processes, etc. are based on this effect. Sarma and Ahmed (2022a) studied 

the thermal diffusion effect on unsteady MHD free convective flow past a semi-infinite 

exponentially accelerated vertical plate submerged in a porous medium. Gulle and Kodi 

(2022) explored the Soret effect on MHD Jeffery fluid past an inclined vertical plate in a 

porous medium taking radiation and chemical reaction into account. Niranjan et al. (2017) 

investigated the combined effects of radiation, chemical reaction, Soret, and Dufour on an 

MHD mixed convection stagnation point flow. Jayakar et al. (2018) studied thermal diffusion 

effect on chemically reacting MHD flow past an inclined plate in a slip flow regime. 

Oyekunle and Agunbiade (2020) explored both Soret and Dufour effects with an inclined 

magnetic field on unsteady MHD flow. Ahmed and Sarma (2021) studied thermal diffusion 

effect on unsteady MHD free convective flow past a semi-infinite vertical plate with 

parabolic ramped temperature. 

 In most works of MHD, the effect of the induced magnetic field is neglected on the 

assumption that for many natural gases, electrical conductivity is very low and as a result, the 

magnetic Reynolds number is very small. But, when a missile travels through the earth's 
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atmosphere, a huge amount of heat is generated due to friction and it sometimes ionizes the 

gas in the surrounding air near the stagnation point. This ionized gas in the stagnation region 

is electrically conducting. When a magnetic field is applied in this region, an electromagnetic 

force is induced in the air and consequently, it affects the motion. Acknowledging the 

importance of induced hydromagnetic effects on flows of electrically conducting fluid, some 

researchers carried out model research on the consequences of the induced magnetic field. 

Goud et al. (2021) considered the induced magnetic field effect on MHD free convective 

flow in conducting and non-conducting vertical microchannel walls. Jha and Aina (2016) 

explored the role of an induced magnetic field on free convective MHD flow in a vertical 

microchannel. Poddar et al. (2021) analysed the effect of magnetic field induction in a 

radiating MHD flow. Sarveshanand and Singh (2015) examined the effects of the induced 

magnetic field in a free convective MHD flow between two parallel plates. 

 The purpose of our current study is to analyse the combined impacts of induced 

magnetic field and thermal diffusion on a free convective and chemically reactive MHD flow 

past an exponentially accelerated flat vertical plate. The wall temperature is taken to be 

ramped. Studying the available literature, we have not found any work considering the above 

effects together. The governing equations are converted to non-dimensional equations with 

the help of some non-dimensional variables and parameters. Then they are solved using a 

closed form of the Laplace transform technique. Effects of various flow parameters on 

velocity, temperature, concentration, Nusselt number, and Sherwood number are discussed 

with the help of graphs. Variation of skin friction is demonstrated with the assistance of 

tables. 

8.2 Mathematical Analysis 

 The equations that govern the motion of an electrically conducting, radiative, and   

chemically reacting fluid in the existence of a magnetic field with constant mass diffusivity 

and constant thermal diffusivity taking  Soret effect into account are 

Equation of continuity (based on the law of conservation of mass and Newton's 2
nd

 law of 

motion) 

 0q   (8.1) 

Magnetic field continuity equation 
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 0B   (8.2) 

Ampere‟s law 

 
eB J   (8.3) 

Momentum equation (based on the law of conservation of linear momentum) 

   2q
q q p g J B q

t
  
 

         
 

 (8.4) 

Energy equation (based on the law of conservation of energy) 

   2

p r

T
C q T T q

t
 

 
      

 (8.5) 

Species continuity equation (based on the law of conservation of species) 

    2 2

M T

C
q C D C D T K C C

t



       


 (8.6) 

Magnetic diffusion equation for small magnetic Reynolds number 

 2B
B

t



 


 (8.7) 

Equation of state 

    1 T T C C     
        (8.8) 

All the physical quantities are described in the list of symbols. 

We, now consider a transient MHD free convective flow of a viscous incompressible 

electrically conducting optically thick non-Gray fluid past a semi-infinite vertical plate in 

presence of a uniform magnetic field applied in the transverse direction to the plate directed 

into the fluid region. Initially, the plate and the neighbouring fluid were at rest with uniform 

temperature T and concentration C at all points in the fluid. At time 0t  , the plate is 

accelerated exponentially with velocity a t

oU e
 

. The temperature of the plate is instantaneously 
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lifted to  
0

w

t
T T T

t
   , for

00 t t  , and thereafter wT when 0t t . The concentration is 

elevated to wC  and maintained thenceforth. 

 To idealize the mathematical design, the on-going analysis is confined to the 

following limitations- 

I. Apart from density variation in buoyancy force, all other fluid properties are 

assumed to be constant. 

II. Viscous dissipations of energy are neglected. 

III. The Magnetic Reynolds number is very small. 

IV. The plate is electrically insulating. 

V. Radiation heat flux present in the direction of the plate velocity is negligible in 

comparison to that in the normal direction. 

VI. Flow is parallel to the plate. 

VII. Polarization voltage is negligible as no external electric field is applied. 

VIII. The chemical reaction is of the first order and homogeneous. 

IX. Fluid temperature and concentration do not depend on the distance parallel to the 

surface.  

                                                                                                                                                                 

 

Figure 8.1: Flow diagram 

We introduce a rectangular Cartesian co-ordinate system  , , ,x y z t     with X axis 

vertically upwards, Y axis normal to the plate directed into the fluid region, Z axis along the 

Y 

Z 
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width of the plate. Let  ,0,0q u be the fluid velocity,  0, ,0xB B B be the magnetic 

induction vector and  0, ,0r rq q  be the radiation heat flux at the point  , , ,x y z t    in the 

fluid. 

Equation (8.1) gives 

 

 

0

. ., ,

u

x

i e u u y t






   

 (8.9) 

Equation (8.2) gives 

 

 

0

. ., ,

x

x x

B

x

i e B B y t






   

 (8.10) 

Equation (8.4) reduces to 

 
2

0 2
ˆ ˆ ˆ ˆ ˆ ˆxBu p p u

u u i i j gi B i i
t x x y y y

   
        

                         
 (8.11) 

Equation (8.11) gives 

 
2 /

0 2

xBu p u
g B

t x y y
   

   
    

      
 (8.12) 

and 

 0
p

y


 


 (8.13) 

 Equation (8.13) confirms that pressure near the plate and pressure far away from the 

plate is the same along the normal to the plate.  

 For fluid region far away from the plate, equation (8.12) takes the form 

 0
p

g
x




  


 (8.14) 
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Eliminating 
p

x




 from (8.12) and (8.14), we get 

  
2

0 2

xBu u
g B

t y y
    

  
   

   
 (8.15) 

Equation of state (8.8) gives 

    T T C C      
      

 (8.16) 

Putting value of (8.16) in (8.15) 
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   
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    

 

The radiation heat flux as per Rosseland approximation is given by 

 
*

4

*

4

3
rq T




    (8.17) 

Using (8.17), Energy equation (8.5) reduces to 

 
* 32 2

2 * 2

16

3
p

TT T T
C

t y y


 


  

 
    

 (8.18) 

Species continuity equation (8.6) reduces to 

  
2 2

2 2M T

C C T
D D K C C

t y y


  
   

    
 (8.19) 

Magnetic diffusion equation (8.7) becomes 

 
2

2

x xB B

t y


  


  
 (8.20) 

The appropriate initial and boundary conditions are 
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 (8.21) 

For the sake of normalization of the mathematical model of the problem, we introduce 

the following non-dimensional quantities- 
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The non-dimensional non- dimensional governing equations are 
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The initial and boundary conditions becomes 
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 (8.26) 

8.3 Method of Solution 

 Taking Laplace transform of the equations from (8.22) to (8.25) and applying the 

conditions (26), we get the following governing equations- 
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subject to the initial and boundary conditions 
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 Solving the equations from (8.27) to (8.30) subject to the conditions (8.31) and taking 

inverse Laplace transform of the solutions, the expressions for the induced magnetic field   , 

temperature field  , concentration field  , and velocity field   are as follows- 

 1xB E  (8.32) 

 1

1

t
    (8.33) 



228 

 

 
1,1 1,2 1,3

2,1 2,2 2,3

: Pr

: Pr

Sc

Sc

  
 

  

   
  

   
 (8.34) 

 

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3

; 1, 1,Pr

; 1, 1,Pr

; 1, 1,Pr

; 1, 1,Pr

u u u u u u Pm Sc Sc

u u u u u u Pm Sc Sc

u u u u u u Pm Sc Sc

u u u u u u Pm Sc Sc
u

u u u

        

        

        

        


  5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

7,1 7,2 7,3 7,4 7,5 7,6

8,1 8,2 8,3 8,4 8,5 8,6

; 1, 1,Pr

; 1, 1,Pr

; 1, 1,Pr

; 1, 1,Pr

u u u Pm Sc Sc

u u u u u u Pm Sc Sc

u u u u u u Pm Sc Sc

u u u u u u Pm Sc Sc









      
         

         


        

 (8.35) 

8.4 Nusselt Number 

The heat flux *q  at the plate 0y  is obtained by Fourier‟s law of conduction is given by 
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Equation (8.36) yields 
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is called the Nusselt number which is 

concerned with the rate of heat transfer at the plate. 

Equation (8.37) gives, 
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8.5 Sherwood Number 

The mass flux wM  at the plate 0y   is specified by Fick‟s law of diffusion is given by 
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Equation (8.39) gives  
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 is called the Sherwood number which is associated with the 

rate of mass transfer at the plate. 

Equation (8.40) yields 

 
1,1 1,2 1,3

2,1 2,2 2,3

;Pr

;Pr

Sh Sh Sh Sc
Sh

Sh Sh Sh Sc

   
 

   
 (8.41) 

8.6 Skin Friction 

The viscous drag at the plate 0y   is determined by Newton‟s law of viscosity is given by 
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Equation (8.42) gives 
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In (8.43), 
2

0U





  is called the skin friction or coefficient of friction which is associated 

with the rate of momentum transfer at the plate. 

Equation (8.43) yields, 
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8.7 Results and Discussion 

 The effects of various flow parameters on flow and transport characteristics are 

analysed by assigning some specific values.  

 Figures 8.2 and 8.3 display the variation of induced magnetic field versus normal co- 

ordinate y. Figure 8.2 shows that induced magnetic field hikes with time. Ascending values of 

magnetic Prandtl number lowers induced magnetic field as noticed in Figure 8.3. Increasing 

magnetic Prandtl number is equivalent to decreasing magnetic diffusivity and as a result 

strength of magnetic field becomes weak. 

 Figures 8.4 and 8.5 demonstrate the variation of temperature field versus normal co- 

ordinate y. Figure 8.4 suggests that the temperature field falls with increasing radiation 

parameter. It establishes the fact that radiation has a tendency to decline fluid temperature. 

Temperature field declines with an uplift in Prandtl number as displayed in Figure 8.5. Thus, 

higher thermal diffusivity declines fluid temperature. 

 Figures 8.6 to 8.9 illustrate the variation of concentration field versus normal co- 

ordinate y. Figure 8.6 reveals that fluid concentration declines as chemical reaction parameter 

hikes. High chemical reaction consumes chemical stuff present in the fluid rapidly and hence 

fluid concentration lowers. Figure 8.7 shows that fluid concentration rises in a thin layer 

adjacent to the plate but its behaviour reverses outside the layer with growing values of 

Prandtl number. This implies that higher thermal diffusivity leads to a decrease in the fluid 

concentration in a slim layer adjoining the plate but its nature takes a reverse turn outside the 

layer. With increasing Schmidt number, fluid concentration reduces as displayed in Figure 

8.8. This agrees with the fact that greater mass diffusivity hikes fluid concentration. There is 

a comprehensive rise in fluid concentration with a growing Soret number as depicted in 
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Figure 8.9. In Soret effect, the concentration of the fluid is affected by temperature gradient. 

So physically, a higher Soret number corresponds to a higher temperature gradient which 

produces higher convective flow. As a result, fluid concentration gets enhanced.  

 Figures 8.10 to 8.19 demonstrate the variation of velocity field versus normal co- 

ordinate y. Figure 8.10 reveals that enhancement in chemical reaction parameter decelerate 

fluid velocity. Increasing chemical reaction parameter suggests that collision between fluid 

molecules is also increasing. As a result, Kinetic energy is lost and velocity declines. 

Velocity declines considerably with ascending values of Prandtl number as shown in Figure 

8.11. This result agrees with the fact that velocity gets enhanced for high thermal diffusivity. 

Figure 8.12 admits that velocity decreases in a small layer adjacent to the plate but its 

behaviour reverses outside the layer with increasing Schmidt number. Thus the phenomena of 

mass diffusivity first increase velocity in a slim layer along the plate but its nature takes a 

reverse turn outside the layer. Figure 8.13 asserts that growing Soret number increases 

velocity in a thin layer but decreases outside the layer. Thus, temperature gradient enhances 

fluid velocity for a small layer only adjoining the plate. Increasing radiation lowers the 

thickness of the momentum boundary layer which eventually leads to a dip in velocity. 

Figure 8.14 suggests that radiation declines fluid velocity. Figure 8.15 displays that 

increasing magnetic Prandtl number upsurges the velocity field. As magnetic Prandtl number 

is the ratio of viscous diffusivity to magnetic diffusivity, so high magnetic diffusivity slows 

down fluid velocity. It is demonstrated in Figure 8.16 that ascending values of magnetic 

parameter reduce fluid velocity. The presence of a magnetic field in the transverse direction 

of flow produces a resistive force called Lorentz force which diminishes fluid velocity. As 

is the ratio of induced magnetic field strength to applied magnetic field strength, so if the 

strength of the applied magnetic field is higher than that of the induced magnetic field, then 

fluid velocity hikes considerably. This phenomenon is noticed in Figure 8.17 It is noticed 

from Figure 8.18 and Figure 8.19 that increment in both thermal Grashof number and solutal 

Grashof number hikes velocity field. Thus increasing thermal diffusivity and mass diffusivity 

both lead to a dip in the velocity field. 

 Figures 8.20 and 8.21 demonstrate the variation of Nusselt number versus time t. 

There is a comprehensive rise in the Nusselt number for increasing values of radiation 

parameter as observed in Figure 8.20. Thus, heat transfer from the plate to the fluid get 

enhances for high radiation. Figure 8.21 shows that increasing Prandtl number lifts Nusselt 
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number. This result establishes the fact that higher thermal diffusivity slows down the rate of 

heat transfer. 

 Figures 8.22 to 8.25 display the variation of Sherwood number versus time t.  It is 

observed from Figure 8.22 that the uplifting radian parameter diminishes Sherwood number. 

This suggests that radiation decelerates the rate of mass transfer from the plate to the fluid. 

Figure 8.23 shows that Sherwood number hike with ascending values of chemical reaction 

parameter. This is because increasing chemical reaction parameter speed up the collision 

between the molecules and as a result mass transfer rate from the plate to the fluid 

accelerates. Increasing Prandtl number declines Sherwood number as noticed in Figure 8.24. 

This result agrees with the fact that high thermal diffusivity enhances the rate of mass transfer 

as time progresses. Figure 8.25 reveals that ascending values of Soret number diminish 

Sherwood number to a great extent. This means that a high temperature gradient uplifts the 

rate of mass transfer from the plate to the fluid. 

 Numerical values of Skin friction τ against different time radiation parameter N, 

Prandtl number Pr, Soret number Sr, Schmidt number Sc and radiation parameter K are 

illustrated in Table 8.1. It is observed that skin friction declines with an increment in 

radiation parameter. Thus, radiation slows down the process of momentum transfer from the 

plate to the fluid. Upsurge in both Prandtl number and Soret number diminishes skin friction. 

This asserts that high thermal diffusivity increases but a high temperature gradient declines 

the process of momentum transfer from the plate to the fluid. An opposite nature is observed 

for increasing chemical reaction parameter. Thus the high rate of collision between the 

molecules reduces the momentum transfer rate. 

 Numerical values of skin friction  against different thermal Grashof number Gr, 

solutal Grashof number Gm, magnetic Prandtl number Pm and magnetic parameter M are 

analyzed in Table 8.2. It is observed that upsurge in both thermal Grashof number and solutal 

Grashof number declines skin friction. This means that both thermal buoyancy force and 

solutal buoyancy force slow down the process of momentum transfer from the plate to the 

fluid. Ascending values of magnetic Prandtl number diminishes skin friction. So, high 

magnetic diffusivity upsurges the momentum transfer rate. A reverse phenomenon is 

observed for the magnetic parameter, i.e., increasing magnetic parameter hikes skin friction. 

Lorentz force opposes the motion of flow by significantly exerting drag force. As a result 

coefficient of friction hikes. 
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8.8 Conclusion 

 The main motivation behind the present investigation is to study the effects of  

induced magnetic field and thermal diffusion  in a chemically reacting, free convective, 

incompressible viscous and radiative, unsteady MHD flow past an exponentially accelerated 

moving vertical plate. The wall temperature is taken to be ramped. A set of non- dimensional 

variables and parameters is used to transform the governing equations to non- dimensional 

differential equations and they are solved with the help of Laplace transformation technique. 

The prominent outcomes of our investigation are: 

i. The induced magnetic field gets lowered with ascending values of magnetic 

Prandtl number. 

ii. The effect of chemical reaction declines both fluid velocity and concentration. 

iii. Themal diffusion effect upsurges fluid concentration. 

iv. Radiation has a tendency to decline both temperature and velocity fields. 

v. Radiation hikes Nusselt number but lowers Sherwood number. 

vi. Increasing thermal diffusivity enhances both rate of momentum transfer and mass 

transfer but decline rate of heat transfer from the plate to the fluid. 

vii. Lorentz force hinders the rate of momentum transfer. 
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Figure 8.2: Induced magnetic field versus for different t and Pm=1 

Figure 8.3: Induced magnetic field versus for different Pm and t=1  

Figure 8.4: Temperature field versus for different N 

and t=1, Pr=0.71, t1=0.5 
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Figure 8.5: Temperature field versus for different Pr 

and t=1, N=5, t1=0.5 

Figure 8.6: Concentration field versus y for different K 

and t=1, N=5, Pr =0.71, Sr=1, Sc=0.22, =0.5 

Figure 8.7: Concentration field versus y for different Pr 

and t=1, N=5, Sr=10, Sc=0.22, K=0.5, =0.5 
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Figure 8.8: Concentration field versus y for different 

Sc and t=1, N=5, Pr =0.71, Sr=1, K=0.5, =0.5 

Figure 8.9: Concentration field versus y for different Sr 

and t=1, N=5, Pr =0.71, Sc=0.22, K=0.5, =0.5 

Figure 8.10: Velocity field versus y for different K and t=1, N=1, Pr =0.71, 

Sr=0.5, Sc=0.22, M=0.5, = 0.5, Gm=10, Gr=5, Pm=0.5, a=1, =0.5 
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Figure 8.11: Velocity field versus y for different Pr and t=1, N=2, Sr=0.5, 

Sc=0.22, K=1, M=0.5, = 0.5, Gm=1, Gr=10, Pm=0.5, a=1, =0.5 

Figure 8.12: Velocity field versus y for different Sc and t=1, N=1, Pr=0.71, 

Sr=1, K=0.5, M=0.5, = 0.5, Gm=1, Gr=5, Pm=0.5, a=1, =0.5 

Figure 8.13: Velocity field versus y for different Sr and t=1, N=1, Pr=0.71, 

Sc=0.22, K=0.3, M=0.5, = 0.5, Gm=1, Gr=5, Pm=0.5, a=1, =0.5 
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Figure 8.14: Velocity field versus y for different N and t=1, Pr=0.71, Sr=0.5, 

Sc=0.22, K=1, M=0.5, = 0.5, Gm=1, Gr=10, Pm=0.5, a=1, =0.5 

Figure 8.15: Velocity field versus y for different Pm and t=1, N=1, Pr=0.71, 

Sr=0.5, Sc=0.22, K=1, M=0.5, = 0.5, Gm=10, Gr=5, a=1, =0.5 

Figure 8.16: Velocity field versus y for different M and t=1, N=1, Pr=0.71, 

Sr=0.5, Sc=0.22, K=1, = 0.5, Gm=10, Gr=5, Pm=0.5, a=1, =0.5 
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Figure 8.17: Velocity field versus y for different  and t=1, N=1, Pr=0.71, 

Sr=0.5, Sc=0.22, K=1, M=0.5, Gm=10, Gr=5, Pm=0.5, a=1, =0.5 

Figure 8.18: Velocity field versus y for different Gr and t=1, N=1, Pr=0.71, 

Sr=0.5, Sc=0.22, K=1, M=0.5, = 0.5, Gm=5, Pm=0.5, a=1, =0.5 

Figure 8.19: Velocity field versus y for different Gm and t=1, N=1, Pr=0.71, 

Sr=0.5, Sc=0.22, K=1, M=0.5, = 0.5, Gr=5, Pm=0.5, a=1, =0.5 
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Figure 8.20: Nusselt Number versus t for different N and Pr=0.71, t1=0.5 

Figure 8.21: Nusselt Number versus t for different Pr and N=5, t1=0.5 

Figure 8.22: Sherwood Number versus t for different N 

and Pr=0.71, Sr=1, Sc=0.22, K=0.5, =0.5 
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Figure 8.23: Sherwood Number versus t for different K 

and N=1, Pr=0.71, Sr=1, Sc=0.22, =0.5 

Figure 8.24: Sherwood Number versus t for different Pr 

and N=1, Sr=1, Sc=0.22, K=0.5, =0.5 

Figure 8.25: Sherwood Number versus t for different Sr 

and N=1, Pr=0.71, Sc=0.22, K=0.5, =0.5 



242 

 

N Pr Sr Sc K   

1  

0.71 

 

1 

 

0.22 

 

1 

1.6651 

2 1.6113 

3 1.5648 

5 1.5033 

 

1 

0.60  

1 

 

0.22 

 

1 

1.6733 

0.71 1.6651 

0.99 1.6123 

1.38 1.4715 

 

1 

 

0.71 

0.5  

0.22 

 

1 

1.7012 

1 1.6651 

2 1.5929 

5 1.3763 

 

 1 

 

0.71 

 

1 

0.10  

1 

1.4222 

0.15 1.5606 

0.22 1.6651 

0.25 1.6959 

 

1 

 

0.71 

 

1 

 

0.22 

0.5 1.5113 

1 1.6651 

2 1.7542 

 

 

Gr Gm Pm M   
0.5  

1 

 

0.5 

 

0.5 

1.9785 

1 1.6651 

2 1.0383 

3 0.4115 

 

1 

0.5  

0.5 

 

0.5 

2.0501 

1 1.6651 

2 0.8950 

3 0.1250 

 

1 

 

1 

 

0.5  

0.5 

1.6651 

1.5 1.5498 

3 1.5108 

5 1.4925 

 

1 

 

1 

 

0.5 

0.5 1.6651 

1 1.8722 

3 2.7066 

5 3.5291 

 

 

 

Table 8.1: Computational values of skin friction for various N, Pr, Sr, Sc 

and K when t=1, Gr=1, Gm=1, Pm=0.5, =0.5, M=0.5, a=1, =0.5 

Table 8.2: Computational values of skin friction for various Gr, Gm, Pm and 

M when t=1, N=1, Pr=0.71, =0.5, Sr=1, Sc=0.22, K=1, a=1, =0.5 
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Nomenclature 

a : Surface acceleration parameter  

*a : Absorption coefficient 

B : Magnetic flux density  

0B : Strength of the applied magnetic field 

/

xB : Induced magnetic field  

C : Molar species concentration  

pC : Specific heat at constant pressure 

C : Concentration far away from the plate  

wC : Concentration at the plate 

MD : Mass diffusivity  

TD  :  Molar thermal diffusivity 

0H  : Induced magnetic field 

J   : Current density vector 

g : Gravitation acceleration vector  

g : Gravitational acceleration  

Gr : Thermal Grashof number 

Gm : Solutal Grashof number  

J : Current density vector 

K  : Chemical reaction rate 

K : Chemical reaction parameter 

M : Magnetic parameter 

N : Radiation parameter 

p : Pressure 
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Pr : Prandtl number   

Pm  : Magnetic Prandtl number 

q  : Fluid velocity vector 

rq : Radiation heat flux vector 

rq : Radiation heat flux 

Sc : Schmidt number 

Sr  : Soret number 

t  : Time 

0
t : Critical time for rampedness 

1t : Non- dimensional critical time for rampedness 

wT : Temperature at the plate 

T : Undisturbed temperature 

/u : X-component of fluid velocity 

0U : Plate velocity 

Greek Symbols: 

   : Magnetic diffusivity 

e : Magnetic permeability 

 : Coefficient of viscosity 

 : Electrical conductivity 

* : Stefan-Boltzmann constant 

 : Fluid density 

 : Fluid density far away from the plate 

 : Thermal conductivity 

* : Mean absorption constant 
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 : Volumetric coefficient of thermal expansion 

 : Volumetric coefficient of solutal expansion  

 : Kinematic viscosity 

Subscripts: 

w : Refers to physical quantity at the plate 

 : Refers to physical quantity far away from the plate 
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(The functions are defined in Chapter I) 
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FUTURE SCOPE 

 

 The equations governing the flow problems of the proposed thesis are solved using 

Laplace transform technique. The problems are idealized by imposing some realistic 

constraints (e.g., viscous dissipation, Joule heating, effect of suction, etc. are neglected for 

mathematical simplicity). The problems may be re- investigated by removing or reducing 

number of constraints. In this context, some numerical and computational techniques like 

Runge- Kutta method, shooting method, Crank- Nicolson method etc. may be suggested. 
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