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3. RELATIVE INJECTIVITY

In this chapter we discuss relative injectivity and injectivity of N-groups. This chapter has

four sections.

3.1 PRELIMINARIES:

This section deals with some basic definitions and results which are used in the later

sections.

Definition 3.1.1: Let E be an N-group. Then the singular subset of E is defined as the set
Z(E)= { x € E/ Ix =0 for some essential N-subgroup I of N}.

An N-group E is called singular N-group if Z(E) = E.

An N-group E is called non-singular N-group if Z(E) = 0.

Definition 3.1.2: If E is an N-group, the set Zy(E) = { x € E/ Ix = 0 for some essential

ideal I of N} is weak singular subset of E.
An N-group E is called weak singular if Z(E)=E.
An N-group E is called weak non-singular if Z(E)=0.

Example 3.1.3: N = Z3 is a near-ring with two operations ‘+’ as addition modulo 8 and .’

defined by following table:
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0 1 2 3 4 5 6 7
0| o 0 0 0 0 0 0 0
1] 0 0 0 2 0 4 4 2
2 |1 0 0 0 4 0 0 0 4
30 0 0 0 6 0 4 4 6
4.1 0 0 0 0 0 0 0 0
51 0 0 0 2 0 4 4 2
6 | 0 0 0 4 0 0 0 4
7] 0 0 0 6 0 4 4 6

Here 1= {0, 4} is an essential N-subgroup of N. Here V x € N, Ix =0. So Z(N) =N, so N

is singular.

But I = {0, 4} is also an essential ideal of N. Hence Z,(N) = N and so N is also weak

singular.
Example 2.1.13 is an example of non-singular as well as weak non-singular N-group.

Definition 3.1.4: An N-monomorphism f : A — B is said to be an essential N-

monomorphism if fA <. B.

Proposition 3.1.5: An N-group C is singular if there exists a short exact sequence

f
0 —> A — B —> C —> 0 such that f is an essential N-monomorphism.
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f
Proof: Let 0 — A — B — C -0 be a short exact sequence such that f is an essential N-
monomorphism. For any b € B, we have a map k : N — B defined by k(n) = nb. By

proposition 1.3.5, k"’(fA) <. N.

=> the N-subgroup I = { n € N/ nb e fA} is an essential N-subgroup of N.
Now Ib < fA = Kerg.

Hence g(Ib)=0 = I(gb) = 0 and so gb € Z(C).

Since g is an N-epimorphism, we get Z(C) = C = C is singular.
Corollary 3.1.6: If A is an essential ideal of B, then B/A is singular.
Proof: We consider the short exact sequence 0— A -l> B = B/A 0.
As A £, B, from above proposition B/A is singular.

Proposition 3.1.7: If B is Non-singular and B/A is singular then A < . B.

Proof: If B/A is singular and x is non-zero element of B, then IX = 0 for some essential N-

subgroup [ of N = Ix < A. As B is non-singular, we have Ix # 0 and thus Nx n A # 0.
Therefore A < ywe B.

Proposition 3.1.8: If N is a dgnr and {Ne} (< is an independent family of normal N-

subgroups of N-group E then E is a homomorphic image of @ (g Ne.
Proof: Let f.: Ne — E be defined by fi(ne) = ne.

Then f, is N-homomorphism.
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Let fe, : Ne, — E be defined by f¢ (nie;) = nie; and fe, : Ne; > E be defined by fej (nie)) = nje5

Let fe,+ fej : Nei © Ne; — E be defined by (fe, + fe])(n,e, +nje)) = (fe, (niey) + fe). (njey).
Obviously it is well-defined.
Let (ni/ e+ nj’ &) (ni” e+ nj” &) Ne; ® Ne;j and (fe, + fej)((ni’ e+ nj’ )+ (n;” g+ nj” )]
= (fe,+ fe, Y(nfe; + nie;) + (nj’ e+ nj/ ! ej)) [since Ne’s are normal N-subgroups ]
= (fo,+ fo)(@ +1/Ye) + ((@+ n")e))
= @/ +n{)e; + (nf* 0,
= ((n/ei+n/e) + (nfe; + n)e)
= ((nfe; + n/e) + (ne, + nf'e))
=fo,(nfe) + o, ( nfe;) + fo,(n"ei ) + foi( n"e;))
=t fej)(ni’ei +ne) +(fo,+ foy )(ni/;ei +n,"e;)
Next for neN, (£, + e, Yn(nie; +ni'e)) = (Fo,+ fo, X Th s (nfe; +ne,)) [since N dgnr]
= (fe;  fe; X si(n/ei + e+ synfe; + n/eiyt . ..+ si(n/e, + ney)
= (fe, £ )(( sinf +sonf +. . +san) e+ (s +son’ ..+ s) )
= (fo,* fe, ((Zq si) n) & H(Tiy ) )
=( fo,+ fe, )((nny)e; +(nni")e)

= (nny)e; +(nn")e;
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= (2181 n/e, +( Xz Si) ni”ej'
=(( sin{ e + son & +...+sn e) +( siny” g+ son,” gt+...+ S’ €))
=( s;(n;’ e +n e+ sao(n/'e; + nf” e)t...+ s,,(n/ e + /' e))
= (Ziysi (e +n'ep)
=n(fe,+ fe,) (n/e; + n’e;)
Thus (fe,+ fej) is an N-homomorphism.

Similarly if we define f=Z¢cgf; : @ ccg Ne > E by (Z eeg f) (T eek n€) = (et folne)) , n

€ N, it is an N-homomorphism.
Obviously it is an N-monomorphism.
Again for any ex € E we get ex € Nex € @ g Ne. So fis onto.

Hence E is a homomorphic image of @ g Ne.

Theorem 3.1.9: For a short exact sequence 0 — A 5B -?—-) C — 0 if A and C are finitely

generated then B is also finitely generated.

112
|=

>

Proof: As B : B — Cis an epimorphism, Cz2— =C

B
Kerp a(A)

B
e

For identity map o, C =

So if an N-group B has finitely generated N-subgroup A and factor N-group % then B is

also finitely generated.
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Definition 3.1.10: For an N-group E an element x is called a nilpotent element if x* = 0 for

some keI,
3.2 E-injectivity and injectivity:

In this section we define relative injective N-groups, and some special relative injective

N-groups and investigate various characteristics of these N-groups.

In the third section of the chapter we study direct sums of relative injective N-groups and
N-subgroups, direct product of relative injective N-groups. Using the notion of dominance
of an element of an N-group by another N-group direct sums of relative injective N-groups

are established. .

In the last section we are trying to relate direct sums of relative injective N-groups and
chain conditions, relative injectivity of simple, semi-simple, strictly semi-simple , singular

N-groups and chain conditions.

Throughout the remaining section of this chapter we consider all N-groups

unitary N-groups unless otherwise specified.

Definition 3.2.1: Let E and U be N-groups. U is called E- injective or U is injective
relative to E if for each N-monomorphism f: K — E , every N ~homomorphism from K

into U can be extended to an N- homomorphism from E into U. i.e. The diagram

K f E
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commutes. i.e. g=hf.

An N-group A is injective if it is E-injectve for every N-group E of N. So if an N-group A

is injective it is E-injectve for any N-group E.

Proposition 3.2.2: Let N be a dgur, E be an N-group and F be a commutative N-group.
Then the set Homn(E, F) = { £/ f: E> F is an N-homomorphism} is an abelian group

where addition is defined as : for f, g € Homyn(E, F), (f+ g)(e) = fle) + g(e).
Proof: As F is an abelian N-group, for f, g € Homn(E,F)ande € E,
(f+g)e)=1{e) +g(e)
=g(e) +1{e)
=(gtf)e),sof+g=g+f
We are to show f+ g is an N-homomorphism.
Forej,,e2e E, (f+g)(e1+e)=1fle;t+e)+gle1+ez) [ By given condition]
=f(e;) + f(eZ‘) +g(e)) +gley) [+ f.g are N-homomorphism]
= f(e;) + g(er) + fle2) + g(ez) [+ F is abelian]

=(f+ g)(er) + (f+ g)ey) [ By given condition]
Nextfore e E,ne N
(f+g)ne)=f(ne)+gne) [By given condition]
=nf(e)+ ng(e) [~ f, gare N-homomorphisms]

= ( iz sf(e) + (Xikasgle) [+ Nis dgnr]
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=sif(e) + saf€) +.. .+ sof(e) + s18(€) + s28(€) +. . . + sug(e)

= sif{e) + s1g(€) + safe) + sag(e) + .. . +sufle) +sgle) [+ siffe), sigle)  F]
=81 (fe) + g(e) )t sa(fle) + g(e) )+ ... +sa(f(e) +g(e))

=si((f+ () )t s:((E+g)(e) )+ ...+ ((f+g)(e))

=(@itst . s ((f+g)(e))

=n((f +g)(e)

Thus f + g is an N-homomorphism.

Proposition 3.2.3: Let B, M be two N-groups and C an ideal of B. For N-homomorphism
f:B — M 3 unique homomorphism f : -g— ~— M such that f (b) = f(b), V C < Kerf.

Proof: Letb; =b,
= b1 - bz = 6

=>b-b+C=C

= b;—by € Cc Kerf
= (b1 ~b) =0

= f(br) - f(b2) = 0
=f(by) =f(by)

So f is well-defined.

Next f(b; + by)
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=1(b1) + £ (b2)

=f(by)+ f(by)

And f (n b)

=f(n®+C))

=f(mb+C)

= f(nb)

= f(nb)

= nf(b)

=nf (b)

So f is an N-homomorphism and by definition obviously it is unique.

Thus we get if f is an epimorphism, then f defined as above is also an epimorphism.

Definition 3.2.4: Let U be an commutative N-group and f: L — M be an N-

homomorphism. We can define a mapping
' = Homy( f, U) : Homn(M, U) — Homy(L, U)

by Homy( £, U) : y = yf i.e. f'y=yf then Homy( £, U) is an N-homomorphism..
Proposition 3.2.5: If U is a commutative N-group, then for every exact sequence

f
0>K—-E-SL>0

y f
the sequence 0 — Homn(L, U) 5 Homn(E, U) — Homn(K, U) is exact.

Proof: If y € Homn(L, U) and g'(y) =0
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=yg=0
=y=0 [+ gisN-epimorphism]
= ¢ is N-monomorphism.

Next let ye Homn(L,U). Then f g*(y) = f" (ve) =(a)f=v(gh=y0= 0°'=0= Oy
Soweget f g =0 :»img‘g_Kerf*.

Nextlet B € Ker ', then pf=1p =0

= B(mf) =0 = p(Kerg) =0

= Kerg < Kerf.

Now B : E — U is an N-homomorphism such that Kerg < Kerf.

=> 3 a unique N-homomorphism p : Rgfé — U such that B(b) = B(b).

Also g: E — L is an N-epimorphism, so 3 an N-isomorphism ¢ : EEB}E — L such that

o(b) = g(b).

We consider the following sequence of N-homomorphisms
¢“1 E B . . - =1
L — Ko U, which gives B ¢~ € Homy(L, U).

Nowg (B ¢7)=F ¢ Hg=8
=PBeimg’. [sinceg (B ¢ )b)=((B ¢ ")e)b)= B (b)=B(®)].

So img =Kerf".
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Proposition 3.2.6: A commutative N-group U is E-injective if and only if Homn( - , U) is

exact.

Proof: We assume U is E-injective.

We consider the exact sequence 0 — A E _E_) C—0.

Now exactness of 0 —> A — E LR C — 0 implies

0 — Homn(C, U) ~— Homy(E, U) ~ Homn(A,U) is exact.

So it is enough to show a* is epic.

Let f € Homn(A, U). We consider the diagram

0>A——0 SE

U

Since U is injective, 3 y € Homn(E, U) such that yo. =f
= o'y={f
= o is onto.
Conversely, let HomN( -, U) be exact. We consider the diagram with exact row

U

0>A————E
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a B E .
0>A—>DE—— -0 isexact.
ma

= 0 — Hom( ;—n% ,U) —l}—-) Homy( E, U) N Homn( A, U ) — 0 is exact.

Since a* is an epimorphism, for f € Homn(A, U) such that o*y=1
= ya={
Thus 3y :E — U such that yo =f = U is E- injective.
Definitions 3.2.7: An N-group E is a WI-N-group if N-group W is E-injective.
Definition 3.2.8: An N-group E is a Wcl-N-group if a commutative N-group W is E-
injective.
Definition 3.2.9: An N-group E is called a s-simple or a strict simple N-group if it has no

proper normal N-subgroups.

Proposition 1.3.12 holds for normal N-subgroups also. Thus we get the following

proposition:
Proposition 3.2,10: The following are equivalent

(a) Every normal N-subgroup of E is a direct summand.
(b) E is a sum of simple normal N-subgroups.

(c) E is a direct sum of simple normal N-subgroups.

Definitions 3.2.11: We define s-Soc E or strict socle of E as direct sum of simple normal

N-subgroups.

An N-group E is called a strictly semisimple N-group if s-Soc(E) = E. In other words E is

strictly semisimple if one of the conditions of proposition 3.2.10 holds.
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We observe that every semisimple N-group is strictly semisimple but the converse is not

true. If N is a dgnr then every strictly semisimple N-group is semisimple.

The following is an example of strictly semisimple N-group which is not semisimple.

Example 3.2.12: We consider the near-ring N ={ 0, a, b, ¢, X, y } under the addition and

multiplication defined as the following table

+ 0 a b c X y
0 0 a b c X y
a a 0 y X c b
b b X 0 y a c
c c y X 0 b a
X X b c a y 0
y y c a b 0 X

0 a b c X y
0 0 0 0 0 0 0
a 0 a b c 0 0
b 0 a b c 0 0
c 0 a b c 0 0
X 0 0 0 0 0 0
y 0 0 0 0 0 0
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Here {0,a},{0,b}, {0,c}, {0,x,y} are simple left normal N-subgroups of N.
AndN={0,a}+{0,b}+{0,c}+{0,x,y}.SoNis snictlysemisimple.

But N is not semisimple.

Definitions 3.2.13: An N-group E is called SI N-grou}; if every singular N-group is E-

injective.

An N-group E is called S,,I N-group if every weak singular N-group is E-injective.

An N-group E is called V N-group if every simple N-group is E-injective.

An N-group E is called V; N-group if every simple commutative N-group is E-injective.
An N-group E is called GV N-group if every simple singular N-group is E-injective.

An N-group E is called $? I N-group if every strictly semi-simple N-group is E-injective.

An N-group E is called S* I N-group if every strictly semi-simple singular N-group is E-

injective.

An N-group E is called $*S,I N-group if every strictly semi-simple weak singular N-group

is E-injective.

Definition 3.2.14: A near-ring N is called V near-ring if NN is aV N-group and GV near-

ring if NN is a GV N-group.
A near-ring N is called V, near-ring if NN is a V; N-group.

Proposition 3.2.15: N-subgroups of a WI N-group are again WI N-groups.
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Proof: Let E be a WI N-group.
= W is E-injective.
And let E be any N-subgroup of E.
We show F/ is also a WI N-group.
That is we are to show W is also E-injective.

Leth : E' - E be an N-monomorphism and K’ be an N-subgroup of E/ and f: K'— E' be

any N-monomorphism.
Then hf is also an N-monomorphism, hf : K'- E.

....___.) E/

LY

Now W is E-injective, so for any N-subgroup K of E, the N-monomorphism i:K—>E

and any N-homomorphism k : K — W, 3 an N- homomorphismy : E —» W s.t. k=yi.

i.e. the following diagram

commutes.

Since W is E-injective, so for N- monomorphism hf : K’ — Eand p : K/ - W we get
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y:E— Wsuchthat y(hf)=p.

That is the diagram

N/

commutes.
Now f : K’ — E' is an N-monomorphism and for any N- homomorphism p: K — W,

we get  yh: E' - W such that the diagram
.........................) E/
commutes. That is p = (yh)f.

Therefore W is E'- injective.

Proposition 3.2.16: Homomorphic images of a W¢l N-groups are again W¢I N-groups.

h k
Proof: Given 0 > E — E — E’- 0 is exact and commutative N-group W is E-
injective.
We show W is E/. -injective.

Let E' <K <E and that E” = E/E/. Now we consider the canonical diagram
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0

t

0—> E—E —E/E/—> 0

1]

0—> E—> K —> K/E—> 0
Pt
0 0 0

Now applying Homy( - , W) we get the diagram

0 0 0

v v v

0 — Homn(E/E/, W) - Homn(E, W) — Homn(E/, W) — 0

b

0 — Homn(K/E/, W) — Homy(K, W) — Homy(E, W) > 0

Since Homy(E/E/, W) 1—) Homn(K/E/, W) is epic, for all y e Homyn(K/E, W)J a e

Homy(E/E', W) such that ¢(ct) = y
= of =1y, where f : K/E' - E/E/ is an N-monomorphism and ¢ = Homy( £, W).
Thus W is E/E’-injective.

= E” is W, N-group of E.
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3.3. On direct sum of N-groups with Injectivity and E-injectivity:

In this section we study direct sums of relative injective N-groups and N-subgroups,
direct product of relative injective N-groups. Using the notion of dominance of an element
of an N-group by another N-group direct sums of relative injective N-groups several

properties are established.

Proposition 3.3.1: Let N be a dgnr. If E, is a WI N-group for all oA then E = @qep Eq is

a WIN-group, where E is commutative.
Proof: LetE = ®yea Eq and Eq is WIN-group
= W is E,-injective for all aeA.
We consider an N-subgroup K of E and the N-homomorphism _h K-> W.

Let Q={f:L > W/K<L<Eand(f|K)=h}.
Let g:A>W,h:B>WeQ.g<hifAcBcE.
Then Q is ordered set by set~ inclusion. Q is clearly inductive.
Let h: M — W be a maximal element in Q.
To get the proof it is sufficient to show that each E,, is contained in M.
Let Ko =E; " M.

Then (h | Kq ): Ko > W, so since K, < E, and W is E,- injective, there is an N-

homomorphism
By :Ea—> Wwith (b | Ka) =(B | Ka).

If e, € Eq and m € M such that e,+ m = 0, then e, =—m € K, and h, (e;) +h (m)
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"=h(m)+hm)=0.
Thus f: eq + m —> by (ex) + b (m) is a well defined N-homomorphism f: E, + M — W.
But (f| M) =k, so by maximality of b, E, = M.
Proposition 3.3.2: W is E- injective = W is Ne —injective for all e € E.

Proof: Since Ne is an N-subgroup of E. As W is E- injective, proposition 3.2.15 implies

W is Ne-injective.

Proposition 3.3.3: Let N be a dgnr. If W is a commutative N-group and {Ne} ccr is an
independent family of normal N-subgroups of N-group E, W is Ne—injective foralle € E ,

then W is E- injective
Proof: W is Ne—injective for all ecE.
So by proposition 3.3.1, W is @ (g Ne —injective.

Since E is a homomorphic image of @ g Ne by proposition 3.1.8 and since homomorphic

image of a WCI N-group is Wl N-group by proposition 3.2.16.
So W is E-injective.
Proposition 3.3.4: If a finite direct sum of injective normal N-subgroups (ideals) of E, i.e.

Q =® Qy, where Q, is normal N-subgroup (or ideal) of E is injective, then each Q, is

injective .
Proof: Let Q =® Q, be injective N- subgroup and consider the N-monomorphism

f, : M — Qq, where M is some N- subgroup of E.
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* Q is direct sum, for any e =1, 2, 3, ... ... ..., n there is the inclusion map i, : Qx — Q

and the projectidn onlly : Q —> Qqsuch that Il i =14, .

Consider a diagram

0 > » N/

Ia

Qu

v
o

with top row exact.

Since Q is injective 3 an N- homomorphism h, : N — Q, such that hy @ = if,.
Now define ¥ : N — Qu by ¥o=TI1she

Since Iy iy = lQa, it follows that ¥ @ = [1oh @ =1, iq fy = f.

So, the diagram

)]
0 > M >N/

Y,
fa he

io

I,
commutative.

Thus Q,, is injective.

Proposition 3.3.5: Let N be a dgnr. A finite direct sum of injective normal N-subgroups
(ideals) of E, i.e. Q =@ Q,, where Q, is normal N-subgroup (or ideal) of E, is injective if

each Q is injective .
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Proof: Let Q = ® Q. with each Q injective N- group.

Now consider a diagram

» M @
Jf
Q,

where M, N’ are N subgroups of E with the top row exact.

0]

Foranya.=1,2,3, ... ... ..., n, there is the canonical inclusion iy : Qu —> Q and the

projection Iy : Q — Qq , so there are the N-homomorphisms IT,f: M — Qg .
Since Q is injective there exists a N-homomophism hy, : N — Qg such that h,® =11, f.

Now define a map h: N’ > Q by the formula
h(x) =Z {ho (O}
o=1
=(0X) F eer e o +hy(x)) VxeN.

Then h is N-homomophism.

=h(x1) +h(x2)

h(n'x) = (hy(0'x) + ... ... ... + hy(0'x))
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=1/ hx)+... ... ... + n'hy(x)

= ?=1 S; (h](X)) Foa + Z?.:l §; (hn(X))

=s1((hix) + ... oo oo ThyX)+ .o oo L +sp((hi(x)) + ... ... ... T hy(x))
=sth(x)+......... + sph(x) |

=( ¥, sph(x) =n'h(x).

We shall show the diagram
0 ' M LAREN N
f h
Q > Qq

commutes. i.e. f=had.

Since Q is direct sum, forany x e N/

ho(x) = (dX) + had(X) + .. ... ... + hy §(x))
= (If )+ TR (X) + ... ... ... +ITf (%))
= f(x)

~ho=1f

Thus Q is injective.

Corollary 3.3.6: Let N be a dgnr. A finite direct sum of injective normal N-subgroups
(ideals) of E,i.e. Q =® Q, where Q, is normal N-subgroup (or ideal) of the group E, is

injective if and only if each Q, is injective .
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Theorem 3.3.7: A finite direct sum of injective N-groups, that is Q = @ Q,, where Q, is

N-groups is injective if and only if each Q is injective .
Proof: Let Q be injective, to show each Q, is injective. Proof is same as theorem 3.3.4.

Conversely, let each Qq be injective, to show Q is injective.

Now consider a diagram

> M ¢
Q

where M, N’ are N groups with the top row exact.

O s N

Foranya=1,2,3,... ... .., n, there is the canonical inclusion iy : Q, — Q and the

projection I1y: Q —> Qg , so there are the N-homomorphisms I f: M — Q.

Since Q is injective, there exists an N-homomophism hy : N - Qg such that h,® =TI, f.
Now define a map h: N — Q by the formula
hx) = ((X), ... ... ... , ha(X)) vxeN.

Then h is N-homomophism.

Since h(x; + X2) = (X1 +X2) 5 vv vev <. , ha(x1 + %2))
= (hi(x1 )+ hy (X2) 5 e e .o , hu(x1) + ha( X2))
=K1 ), er e e, (k) + (B (2) 5 e ve o , ha( X2))
= h(x; ) +h( x2)



= hx), ... ... ... , 0'ha(X))
=1 (x), .er o ... , ha(x))
= n'h(x).
We shall show the diagram
o) > M ¢ > N
f h
Q I, T Qa

commutes. i.e. f=ho.

Since Q is direct sum, forany x e N’

ho(x) = (11(x) , hod(X), .. .. ... » B $(x))
= (I (), TLEX), ... ... ... , T (x))
= f(x)

~ho=f

Thus Q is injective.

Theorem 3.3.8: Let N be a near-ring and {Q;}ic;a family of E-injective N-groups. Then

the product Q =IT;¢1Q; is E- injective.
Proof: Let A < E be an N-subgroup of E and f: A —>Q an N-homomorphism.

It is enough to show f can be extended to E.
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Foriel denote 7; : Q — Q; the projection map.

Since Qiis E-injective for any i€l, so the N-homomorphism =,.f : A —>Q, can be extended

to f/: E— Q. Thenwe have f:E—>Q by f(e) = (£/(e)) ie1 -
If a € A, then f(a) =f(a), so { is an extension of f,
Thus Q is E-injective.

Definition 3.3.9: For an N-group A an element xeA is said to be dominated by N-group E
if Annn(x) D Annn(e) for somee € E.

Given a family {Aq}qes of N-groups. Let x be the element of ITej A, whose o-

component is Xg.

We define Iy = {n € N/ nx € ®qe; Aa}.

Then x e I1,e5 Ay is called a special element if I,x, = O for almost all o. In other words 3

a finite subset F of J such that nx ;=0 foralln € Iyand forall a € F.

Theorem 3.3.10: If ®,c; A, is E -injective then each A, is E —injective and every element

of Iy Ag dominated by E is special.
Proof: Let A =@, Ay be E injective.
Consider the N-homomorphism f;: N - A,.
-+ A is direct sum, N’ some N-group of N for any o & J, there is the inclusion map
iy : Aq —> Aand the projection 7 : A —> Ag such that my ig= 1, .

Consider a diagram,
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mono ¢

'S
v
>

with top row exact.
Since A is E - injective, 3 a homomorphism hy : E — A such that h,® =i, f,,
Nowdefine W ot E — Ay by W, = 7tohe,

Since maiq = 14, it follows that Wo® = nghe® = el fu =1,

So the diagram
0 >N »E
fo l hy
A« > A commutative.

Thus A4 is E -injective.

Let x € I1,As be dominated by E = there is an e € E such that Annn(x) D Anny(e).

Then it gives an N-homomorphism f:Ne — ITA, defined by Ae - Ax (A € N).

Let (A1e), (A2¢) € Ne and |
f(h1e) = f(Aze)
= (M1x) # (A2x)

=S RA—A)x=0
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= (A —A2) ¢ Annn(x)

= (M1 —A2)¢ Anny(e) [since Annn(x) D Anny(e)]
=M -A)e=0

= (A1) # (M e)

.. the mapping is well defined .

f(hie + dae) =1f((A1+ A2)e)
=(Ar+2A2)x
= (MX + A2X)
= f(A1€) + f(A2€)
Next forn € N, f(n(Aie)) = f((nA;)e)
= (nA x
=n(A1x)
=n f(Aie)
Thus f is an N-homomorphism .
The image of the N-subgroup Ise by fis clearly I;x (= ® Ay ).
Thus the restriction of f to Ixe is regarded as an N-homomorphism Iye &> @ A,.
Since @A, is E-injective apd so Ne-injective by proposition 3.3.2.

So, we get N-homomorphism Ne — @ A, which means that there exists a u € © A, such

that Ax=Au (forall A € Ly).
It follows that Iix.= Ixu, forall o € J.

But since ug,= 0 for almost all a, it follows that I,x,= 0 for almost all o. too
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= X is special.

Theorem 3.3.11: If {Ne} (. is an independent family of normal N-subgroups of N-group
E in a dgnr near-ring N , @,¢; A,, is commutative N-group then each A, is E —injective and

every element of I1,¢; Ay dominated by E is special implies @qej Ay is E -injective .
Proof: let each A, is E -injective and every element of Il,¢; A, dominated by E is special.
Let e E and consider the N- subgroup Ne of E.

Let J be an N-subgroup of N.

Then Je is an N-subgroup of Ne.

[Letse, te € Je,s,t € J, se +te = (s + t)e € Je and for n € N, n(se) = (ns)e € Je, since ns &

J as J is N-subgroup of NJ
Let there be given an N- homomorphism h : Je &> @ A,.

Then since ® A, < ITA, and ITA, is E-injective (as each A, is E-injective, by proposition
3.3.8) whence Ne- injective (by proposition 3.3.2), h can be extended to an N-

homomorphism Ne — ITA,.

Let x e ITA, and we define the N-homomorphism asie - Ax (A € N)

Therefore it follows that Jx =h (Je) € ® A,, whence J c L.

On the otherhand since clearly Annn(e) < Annn(x), x is dominated by E and thus x is

special by assumption

= I,Xo =0 whence Jx, =0 for almost all a.
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Let u be the element of @A, whose a.-component is X, or 0 according as Jxq # 0 or Jx= 0.
Thenitisclear that Avu=2Ax forall A € J.

Further, it is also clear that Annn(e) © Annn(x) < J and therefore the mapping gives an N-

homomorphism f: Ne — @A, which is an extension of h, because f(Ae) = Au=Ax VAe J.
This implies that @ A, is Ne-injective and so E-injective by proposition 3.3.3.

Corollary 3.3.12: Let N be a dgnr. If {Ne} <k is an independent family of normal N-
subgroups of N-group E, @qej Ay is commutative N-group then ®q¢) A, is E -injective if
and only if each A, is E-injective and every element of Il,<; A, dominated by E is special

implies @y A is E-injective

Theorem 3.3.13: Suppose { Ay}aey is a family of E-injective N-groups such that for every

countable subset k of J, ®,cxAqis E - injective. Then ®c)A, is itself E - injective.
Proof: Assume that ®,¢jA, is not E - injective.

Then by theorem 3.3.10, there exists an x € IlycjAy, which is dominated by E but is not

special = Ikxy # 0 for infinitely many ael.

Let k be an infinite countable subset of the infinite set {o. € J/ Lxq # 0}.

Let y be element of I,k A,, whose a- component y , is equal to x, for all a € K.

Then clearly I Iy, so that it follows that y is dominated by E and Lyy,= Iyxq# 0 Voae K.

This implies again by theorem 3.3.10, that @4,.xAqis not E -injective (because each Ay is

E - injective by our assumption) . This is a contradiction and so the proof is complete.
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3.4: E-injective and injective N-groups with chain conditions:

In this section we study E-injective N-groups with chain conditions. In particular,
E-injective N-groups with descending chain condition are investigated. It is shown that the

singular and semi-simple characters play a vital role in characterization of E-injective N-

groups.

Theorem 3.4.1: Let N be dgnr. If {Ne}.cgis an independent family of normal N-subgroups
of N-group E, @45 Ay is commutative N-group then direct sum of any family { A,} of E -

injective N- groups is E - injective if E is Noetherian.

Proof: let { Ay} be a family of E-injective N- group.

Let x be an element of T1A,, dominated by e.

Then there is an e € E such that Annn(e) < Annn(x).

Consider Ie .

Since clearly Annn(x) < Iz, whence Anny(e) < Iy, it follows that I,/ Annn(e) = Ixe.
On the other hand Ise is a N-subgroup of Ne so N subgroup of Noetherian N-group E.

Hence, I,/ Anny(e) is finitely generated

= there exists a finite number of elements Aj, A3, ... ... ... , An Of Iy s‘uch that
L=NA+Nax......... + NA, + Annn(e)

It follows therefore

Lxo=NAi Xot N A2 X ... ... ... + NAn Xo for all components Xq.

Since however for each i, Aj X, = 0, for almost all o, it follows that I,x,= 0 for almost all o
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= X is special.
Thus @ A, is E- injective by theorem 3.3.11.

Proposition 3.4.2: If {Ne} ¢.ris an independent family of normal N-subgroups of N-group
E in a dgnr near-ring N , direct sum of E-injective N-groups is commutative N-group then
E is Noetherian V N-group(V; N-group) implies every strictly semi- simple N-group is E-
injective.

Proof: E is Noetherian V- N-group

= E is Noetherian and every simple N-group is E- injective.

Again direct sum of E-injective N-groups is E- injective as E is Noetherian

(by theorem 3.4.1).

Let K be any strictly semi simple N-group

= K is direct sum of simple normal N-subgroups.

So K is E- éii’i}jective.

Proposition 3.4.3: For a finitely generated N-group E every countably generated strictly

semi- simple N-group is E- injective implies E is weakly Noetherian V. N-group.

Proof: Suppose {A}qe; is a family of N-groups such that for every countable subset K of

J, @k Ao is E- injective. Then by theorem 3.3.13 ®,.; A, itself E-injective.
Now given that every countably generated strictly semi simple N-group is E-injective.
To show E is weakly Noetherian and every simple commutative N-group is E-injective.

Let U be a countably generated strictly semi- simple N-group.
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Then U = ®@U, , where U, is simple normal N-subgroups, so U,’s can be taken as

commutative N-groups and ae K, K is countable subset of J (as U countably generated).
Given U is E-injective. So we have ®U, , a e J is also E-injective (By theorem 3.3.13).

So by theorem 3.3.10, we get every U, is E-injective
= E is V¢ N-group.
Next to show E is weakly Noetherian.

Given E is finitely generated and W countably generated semi-simple N-group & W is E-

injective.
LetNicNo cNacoen e o be an ascending chain of distinct ideals of E.
Letfx :Nxk > W (k=1,2,3,......... )

As W is E-injective, for inclusion map ix : Nk > E,Jamapyk : E—> Wst. fx= yxix

Let N' = ¥ Ny

Define the map £: N’ — W by

f(x) = Xz & (%)

= T 7 ®)

fis well defined.

- W is E-injective, 3 amap g : E — W extending f.

But E is finitely generated & g (E) € W, w countably generated. So g can be defined as
8(x) = X1 1, ik (%)

for some positive integer m, which gives chain of ideals must be finite.
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Corollary 3.4.4: For a finitely generated N-group E, every strictly semi- simple N-group is

E- injective implies E is weakly Noetherian V, N-group.

isa

Proposition 3.4.5: For dgnr N, if E is a finitely generated SBI-N-group, then Sof(E)

weakly Noetherian V,N-group.

Proof: From the above corollary 3.4.4, it is enough to show that every strictly semi-simple

N-group is injective.

E
Soc(E)

Let L be a strictly semi-simple N-group

So as N dgnr, L is a semi-simple N-group.

. E M . ]
Soc® ideal of Soc® " f: Soo®) L is a non-zero N-homomorphism.
K —
Let Soc®) Kerf.

We claim K is essential ideal in M.

For if K N I = 0 for some non-zero ideal I of M then I = %’5 and since the latter is

isomorphic to an ideal of L, it follows that for some ideal I; #0 and contained in I that I;

L, hence I; € Soc(E) € K, a contradiction.

Now M/K singuler, we may take L singular, since f(M/K) c Z(L).

M

Let n:M— So0c)

denote the quotient map and consider the map fn: M — L.

» L is E-injective f.n extends to a map of E into L.

E

» Soc(E) S K. This yields a map of oc ()

into L by proposition 3.2.3.
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Proposition 3.4.6: Let N be a dgnr If E is an N-group satisfying the following conditions

1) {Ne} ¢k is an independent family of normal N-subgroups of E,
(i)  direct sum of E-injective N-groups is a commutative N-group
(iii) No non-zero homomorphic image of Nx, Vx(# 0) € Soc(E), is semi-simple,

singular

E
Soc(E)

(iv) is Noetherian V N-group,
then E is an S’ I-N-group. |
Proof: Let L be a strictly semi-simple singular N-group.
Let M be an N-subgroup of E.
f: M — L a non-zero map with kerf =K.

Then by given condition Soc(E) N M is contained in K.

[For x €Soc(E) " M = x €Soc(E), x eM = Nx ¢ Soc(E), Nx <M = Nx eSoc(E) N M].

M
Soc(E)nM - L

So by proposition 3.2.3, 3 an N-homomorphism f:

Soc(E)+M Soc(E)+M
o SoclEM g, SocE)IM

Soc(Ey"M —  Soc(E) ’ Soc(E) -~ L.

Since

E
Soc(E)

As is Noetherian V N-group and L semi-simple singular by proposition 3.4.2, L is

—injective, that is f is extended to ¢’ : ool - L.

E
Soc(E)

If we define g : E — L by g (€) = g/( € + Soc(E)). g is extension of .
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Proposition 3.4.7: Let E be an N-group. Then E/M is weakly Noetherian for every

essential ideal M of E if and only if E has A.C.C. on essential ideals.

Proof: Let M be an essential ideal of E .
Then E/M weakly Noetherian
We show E has A.C.C. on essential ideals.

LetMicMcM;c......... > (1)beachainof ideals of E where M; <.E.
Considering an essential N-subgroup M c M; Vi, we can construct another chain
M/McMyyMcM;/Mc........ of E/M.

Since E/M is weakly Noetherian we get M, /M = M,+)/M for some i.

Now M; © M;+;. Our aim is to show M+ € M.

Let x;+1 € M+ but x;:1 ¢ M.

Then Xj+1 + M € Mii/M = X1 + M € M; /M = Xi+1 € M; (since Xj+1 € M).
So M, =M,41.

= E has A.C.C. on essential ideals.

Converse is clear.

Proposition 3.4.8: N-group E is almost weakly Noetherian if and only if E/M is weakly

Noetherian for every essential ideal M of E.

Proof: Let E/S ocE be weakly Noetherian.

We know if N ideal of M, M weakly Noetherian & N & M/N weakly Noetherian, by

proposition 4.1.7.
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M is essential ideal of E and SocE is the intersection of all essential ideals = Soc E € M.

E
= E/S ocE 18 weakly Noetherian <> M/S ocE and M/—S—‘-’—"-’—i- = E/M weakly Noetherian.

/ SocE

Conversely, E/M is weakly Noetherian for every essential ideal M of E.

E

We show —— is weakly Noetherian. It is enough to show that every essential ideal of e

SocE

is finitely generated by proposition 3.4.7.

E_

M .
Let Sob be an essential ideal of o -

Let k be an ideal of M maximal with respect to K n SocE = 0.
Then K @ SocE is essential in M and hence essential in E.

[K ® SocE ideal of M. let M’ ideal of M such that M’ N ( K ® SocE ) = 0.Then M’ ®(K
® SocE ) is a direct sum = M’ @ K ® SocE is a direct sum. Whence (M’ @ K) M SocE =

0. By maximalilty of K, (M ®K) =K, ie M =0.]

Then

is finitely generated.

. . M
is weakly Noetherian. So O SoE

K @ SocE

M M .
From the exactness of the sequence 0 - K — —> — 0, it suffices to show K
SocE K & SocE

is finitely generated.
We claim that K is finite dimensional.
For, if not 3 an infinite direct sum of non-zero ideals ®,¢; K, which is essential in K.

Since K; N Soc E = 0, each K;has a proper essential ideal Ti;.

[since K, N SocE = Soc K; =0].
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Let T=®i T
Then T is an essential ideal of K.

Let K’ be an ideal of K, T =@ T;, where T; are essential ideals of K,.

NowK' =@, K/, K/cK;. Then Tin K/ # 0
= @i TiNnK{ %0
=TN®ig K/ #0.
=STNK = 0.

Again SocE is an essential ideal of SocE and T m SocE = 0.

So T® SocE <. K @ SocE =T @ SocE is an essential ideal of E.

Hence E/T ® SocE 18 weakly Noetherian,

" Asideal ofa weakl Noetherian N-group is weakly Noetherian, —=—— 2ietfs 45 weakl
P T® SocE
Noetherian
= —2ielh_ i weakly Noetherian.
T & SocE
O,1T K & 1K, @'EIK'eaK K
el ly el el T®SocE __ Diel 1 5.
T®SocE = T SocE T @ SocE To soc. Weakly Noetherian imply —5, ™ Zietli T @1, T ®'EIT, 15
. T & SocE

.weakly Noetherian, a contradiction, since it is an infinite direct sum of non zero N-groups.
Thus K is finite dimensional.
Let (K;)I; be a family of non-zero ideals of K such that ®{_; K, is essential in K.

=@, K; <K, 500, Ki ® SocE < K ® SocE <, E.



105

= @i K; ®SocE < E.

E . .
= S K@secE weakly Noetherian.

-Wedefine f; K X

Bz 1K - O K,®Soc E by f(k + & K)) = f(k + ., Ki® SocE)

Now f(ky + L, Ky) # f( ko + O, Ky)

= (ky + ®%; K; ® SocE) # ( k; + O, K; ® SocE)

K

Next, let k € O K,®SocE "

If k=k; + @ K;i®SocE, 3k + (@ K;) € 5:%— such that

f (k) + (DiiKy) =k + (@i K; @ L).

So f'is onto, that is f is isomorphism.

Thus is isomorphic to the ideal of weakly noetherian N-group

K
&K L, K,®SocE

T KOSk .So we have that K S finitely generated, whence K is finitely generated.

E . .
Thus g 18 weakly Noetherian.

Proposition 3.4.9: If N-group E is almost weakly Noetherian then E has A.C.C. on

essential ideals.

Proof: Given Sop 18 weakly Noetherian.

To show E has A.C.C. on essential ideals.
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Soc E is the intersection of all essential ideals of E.
Hence if §§EE is weakly Noetherian, E has A.C.C. on essential ideals.

Proposition 3.4.10: Let N be a dgnr. If N-group E has A.C.C. on essential ideals then E is

. almost weakly Noetherian.

Proof: We assume that E has A.C.C. on essential ideals.

Let A € B be ideals of M such that A is essential in B.

By Zorn’s lemma there is a maximal ideal L of E such that L. N A=0.

And A @ L isessential inE. ~

Since A+L=A @ L, sothat A @ L is an ideal of E. Let C ideal of E with Cn (A @ L)
=0. Then(A@LYD)Cisdirect 2 (AP L +C=ABLDCywhence ANLDC) =

0. By maximality of L we obtain L@® C=L Thus C=0.~» A @ L essential ideal of E.
Hence E/ (A @ L) satisfies ACC on its ideals.

We consider themap ¢ : B®L — B/Abyb+1-— b+ A. [N dgnr] '

Now ¢(b; + 1+ by + 1)
=¢( b1+ byt 1; +l)
=(bi+by)+A
=b+A+bytA
=¢(b1+ 1) + ¢ (b2 +12)
Again, ¢n(b +1)

.—_¢(n1 +n2+n3+ ....+nk)(b+1)
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=¢{m@b+ D) +myb+1)+....+ b +1)}

= o{ (b + mI) + (b + nal) +.... b + nl)}
= (n;b + A)+ (mb + A)+.... Hmyb + A)

= (b +mb +.... +mb) + A

=nb+A

=n(b + A)

=n¢(b +1)

So ¢ is an N-homomorphism.

Kerp = { X/ §(X) = A}
={a+Vd@+D=A}
=A+L

AsA<BandBNnL=0,AnL=0.

- Kerp = AGL

So BA=(B@®LY(ADL).

Hence we get B/A also satisfies acc on its ideals.

‘3

In particular, every uniform ideal of E satisfies acc on its ideals.

Since if I is uniform ideal of E and J,€ J,€ ... ... ... an ascending chain of ideals of I. As I is

uniform, each J; <, L.

=> I/]; satisfies acc on its ideals.

" = I satisfies acc on essential ideals.(by proposition 3.4.7)
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As each J; < I, 3t such that J; = Ji+; = [ satisfies acc on its ideals.

Now, let H be an ideal of E which is maximal with respect to the condition H NSoc(E) = 0.

Then H @ Soc(E) is essential in E and E/H @ Soc(E) satisfies acc on its ideals.

Hence for proving that E/Soc(E)satisfies acc on its ideals it is enough to prove that H

satisfies acc on its ideals.

We first show that H has finite Goldie dimension.

Assume that H contains an infinite direct sum X = X;@X, @... ... ...of non-zero ideals X;.
Since, Soc(X; ) = XiN Soc(E), each X; contains a proper essential ideal Y;and

Y=Y ®Y:D......... is an essential ideal of X.

By the above X / y satisfies acc on its ideals.

But this is impossible because

Xfy= X 1/1,1 @ XZ/YZC-B ......... with each Xi/ y, non zero.

This contradiction shows that H has finite Goldie dimension k (say). Then H contains k
independent uniform ideals U; suchthatU=U; @ U, @... ... ... @ Uy is essential in H.
By the above U and H/U satisfies acc on ideals.

Hence H satisfies acc on ideals.

Proposition 3.4.11: if E is non-singular and Every singular homomorphic image of E is

weakly Noetherian then E is almost weakly Noetherian.
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Proof: As M is essential ideal of E and E is non-singular, E/M is singular.
Again E/ M is homomorphic image of E, by given condition E/M is weakly Noetherian.

Proposition 3.4.12: E is non-singular and almost weakly Noetherian and in E every weakly
essential N-subgroup is essential then every singular homomorphic image of E is weakly

Noetherian.

Proof: Letf:E — L be an N-epimorphism and L is singular.
Now E is non-singular and kerf € E, L = E/kerf singular,

so kerf <yE by proposition 3.1.7.
Then Soc(E) € kerf.

So by proposition 3.2.3 we get L = E/S oc(E)"

As E is almost weakly Noetherian, L is weakly Noetherian.

Corollary 3.4.13: The following conditions on an N-group E of a dgnr near-ring N are

equivalent:

i. E is almost weakly Noetherian.

ii. E/M is weakly Noetherian for every essential ideal M of E..

iii. E has A.C.C. on essential ideals.
Moreover if E is non-singular, every weakly essential N-subgroup is essential
then above conditions are equivalent to

iv. Every singular homomorphic image of E is weakly Noetherian.

Proposition 3.4.14: Near-ring N is weakly Noetherian if @i E; of injective N-groups is

injective.
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Proof: Let ®ie; E; of commutative N-groups is injective and that

I} £ 1 <......... be an ascending chain of left ideals in N.
LetI=U, L.
Ifael, then a €I, for all but finitely many I € N.
So there is an
f:1-02,; EQVI)
defined via ILif(a)=a+I; (ael).
By theorem 4.1.9, there is an  x € ®j=; E(N/ L) such that f(a) = ax for all a € [. Now

choose nsuch that I, I(X)=0,k=0, 1,... ... ...

So V Lk = (D) =T« () = T X)=0
or, equivalently, Iy= I« forallk=0,1,2,... ... ...
So, N is weakly Noetherian.

Definition 3.4.15: An N-subgroup U of N-group E is called pure in E if IU = U n IE for

each ideal I of N.

Example 3.4.16: N = {0, a,b,c} is the Klein’s four group with multiplication

0 a b c
0 0 0 0 0
a 0 a b c
b 0 b 0 0
c 0 c b c
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Then (N, +, .) is a near-ring. Here A = {0, ¢} is N-subgroup of y\N and B = {0, b} is ideal
OfNN.

Now BA = {0} and A " BN = {0, c} n {0, b} = {0}. So BA = A n BN. So, A is pure in
NN.

Proposition 3.4.17: If N is non-singular, SocN is pure and every injective right N-group is
injective as an N/K-group for ideal K of N then direct sum of (countably many) injective
hulls of simple weak singular left N-groups is injective implies N is an almost weakly

Noetherian near-ring.

Proof: Let {S,} i be a family of simple weak singular N/Soc(N)- groups.

Since a simple N-group is weak singular if and only if it is annihilated by Soc(N).

For let E is simple and weak singular. So Zy(E)={x e E/Ix =0, <;N}=E.

So x € E = 3 I <N such that Ix = 0 = Soc(N) x = 0.Thus E is annihilated by Soc(N).

Again let E is annihilated by Soc(N), we get Soc(N) E=0.

=> Soc(N) < Ann(E).

Now we show Ann(E) = { x € N/ xE = 0} is essential ideal in N.

If possible Ann(E) is not essential ideal in N.

Then Ann(E) N J = 0 for some non-zero ideal J of N.

IfVxeE f :J— Jx,defined by f(j) =jx, it is a well defined N-homomorphism.

£(31) # £j2) = (1%) # (G2%) = (1 —j2 )X # 0 = (1 —j2) # 0 = j1 # jo. So fis well-defined.
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Next letj1 ¢j2:> 01 —jz) #0= (jl -'jz)x #z0= (jlx) # (jzx) = f(]]) # f(iz).

So fis one-one.

Again for every jx € Jx, 3 j € J such that f(j) = jx. So fis onto.
f(j1+32) = U +j2)x = (Ji1 X+ j2x) = 1(§1) + {(G2),
f(nj) = (nj)x = n(jx) = nf(j). So fis N-isomorphism.
= VxekE, J=lx
AganZMN)=0=>Z(N)=0=Z(Jx) =0
=V <N, I(Jx) # 0 = SocN.(Jx) = 0.

But Jx ¢ E and SocN.E = 0 = SocN.(Jx) = 0, a contradiction.
So Ann(E) is essential ideal of N, so E is weak singular.

It follows that each nS; is weak singular as an N- group.

Since SocN is pure we get Soc(\N).E(nS;) N nSi=SocN.S,Vie L

As each nS; is annihilated by Soc(N),

SocN.S; = 0. So S;c(NN).E(NS,) N NSi=0. 1.e. ¥V xe E(NS;) , Soc(n\N).x N NS, =Q .
E(nS)) is an essential extension of NS, and since Soc(nN).x is N-subgroup of E(xS,) we get
VvV x € E(nSi), Soc(x\N).x=0.

Thus E(xS;) is annihilated by Soc(N), Vi e L.

We claim that Vie ], E(Nsi) is weak singular as N-group.
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For xe E(nS;) with x¢Zw(E(xS;)) then V I < N, Ix # 0 = Annn(x) is not essential in N.
So Annn(x) N J = 0 for some non-zero ideal J of N.

Since J = Jx and Z(N) = 0, we infer that Z(Jx) = 0, whence Jx N S, =0

[LetJx N S;j=0.

ZUxNS)=0=> VIS N, IJx N S) # 0 = SocNIx N S)) # 0.

But (Jx N S;) < E(xSi) and SocN.E(xS;) = 0,a contradiction].

This implies that Jx = 0.

So J € Annn(x), a contradiction.

Now E( nrsocqw) Si) = { x€E(NS;) : Soc(N)x = 0} = E(nS)) is injective as N-group.

By given condition @i E; is injective as an N-group and hence injective as N/Soc(N)-

group. This implies that N/Soc(N) is weakly Noetherian by proposition 3.4.14.

For a distributively generated near-ring we get the following definition, note and three
results.

Definition 3.4.18 [Pliz]: The Jacobson-radical of N-group E is the intersection of maximal
ideals of E which is maximal as N-subgroup. We denote it by J»(E)

Note 3.4.19 [Pliz]: The Jacobson-radical, Jo(E) of N-group E contains all nilpotent N-
subgroups of E.

Lemma 3.4.20: Let N be a GV- near-ring, then Z (E) N J5(E) = 0, for every N-group E.

Proof: If Z (E) =0, we are done.
Otherwise let (0 #) x € Z (E).
By Zorn's lemma , the set of all ideals M of E with x € M, has a maximal member L.

The quotient N-group S = (Nx + L)/L is simple and singular, therefore E-injective.
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[Z(Nx+L)YL)={X e(Nx+ L)L / Ix =0 for some essential N-subgroup I of N}
Lety e(Nx+ L)L suchthaty=nx+1+L.
Now for some essential N-subgroup IinN,

Iy ={ny/nel}

={ CK s)mx+L)/n'=Zk,s)el}

= {si(nx+L)+sp(nx+L)+ ... +s(nx+L) /0’ € 1}
={smx+L+snx+L+.......+s;nx+L /nel}
={(sinx + snx+.........+smx) +L/n' e I} [since smx € L as sin e N]
—{L)=0.

So¥ € Z((Nx + L)/L)]

This means that the natural map of Nx onto S extends to all of E.

The kernel of this extension map is a maximal ideal of E which does not contain x. Whence
X can not be in J,E).

SoZ(E)NI(E)=0

Theorem 3.4.21: If N is a GV near-ring with A.C.C. on essential ideals and if finite
ir;tersection of essential N-subgroups of N is distributively generated, then Z( N) = 0. In
particular, if N is S ° I near-ring with unity then it is non-singular.

Proof: Letx € Z(N).

Then Anny(x) = Annn(x®) C ... ... ... is an ascending chain of essential left ideals in N,
since Annn(x) <¢N. |

So for some t € I, Annn(x™*! ) <, N by proposition 1.3.3.

We claim x' = 0.

Suppose x' # 0.
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Then we get Annn(x™') N Nx'= 0.
As N has A.C.C. on essential left ideals 3 t e I" such that Annyn(x') = Annn(x™ ), whence

we get Annn(x™* ) = Anny(x*) for all ke I
Let y =nx'(#0) e Annn(x""' ) " Nx'forn e N.
Nowy e Amny(x' )= yx' =0
=>nx* =0
=n e Annn(x*) = Annn(x)
= y=nx'= 0, a contradiction.
ie.y € Amnx"' )=y ¢ Anny(x') = Annn(x') = Annn(x'™ ), a contradiction.
Thus Z(N) contains nilpotent elements.
As finite intersection of essential N-subgroups of N is distributively generated, Z(N) is N-
subgroup of N. [ by proposition 2.1.14]
So J2(N) contains Z(N).
By lemma 3.4.20, Z(N)=0.

For S°I near-ring N, N/Soc(N) is weakly Noetherian by proposition 3.4.5. Again from
proposition 3.4.9, (considering N as N-group) it follows that N has acc on essential ideals
when we get N is non singular.

Theorem 3.4.22: If {Ne}__.~ _is an independent family of normal N-subgroups of
“Soc

N/Soc(N)-group E, direct sum of E-injective N/Soc(N)-groups is commutative N-group,

then N/I is weakly Noetherian V;N-group for every essential ideal I of N implies
N / Soc(N) is weakly Noetherian V. near-ring.
Proof: N/I is weakly Noetherian for every essential ideal I of N implies N/S oc(N) is

weakly Noetherian as proposition 3.4.8.
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Let L be a strictly semi-simple N/Soc(N)-group.
Then as N dgnr, L is a semi-simple N/Soc(N)-group.
I/ Soc(N) an ideal of N/Soc(N) and f': I/ Soc(N) — L a non-zero N-homomorphism.

Let Kerf =K/ Soc(N).

1K

Kand

Now K is essential in N. For if K N J = 0 for some non-zero ideal J of N then J =

since the latter is isomorphic to a ideal of L, it follows that for some ideal I; # 0 and
contained in J that I; € L, hence I; € Soc(N) € K, a contradiction.
Thus N/K is a weakly Noetherian V¢ N-group.

If N = N/ Soc(N) is canonical quotient map, then (N/ Soc(N))/( K/ Soc(N)) is a weakly

N
Soc(N)

. . N
into L. So, L is Soe00

Noetherian V¢ N-group. Propbsition 3.4.2, yields a map of
injective.

Thus by corollary 3.4.4, N/S oc(N) is weakly Noetherian V. near-ring.

If every injective right N/K-group is injective as an N-group we get the following resullt.
Theorem 3. 4.23: For a near-ring N with unity the following conditions are equivalent:
i. Nis SZSWI -near-ring.

ii. N/S oc(N) is weakly Noetherian V; near-ring.

Proof: i. =ii. By corollary 3.4.4, we have; to show that every strictly semi-simple
N/Soc(N)-group E is injective .

If E is N/Soc(N)-group then SocN.E = 0.

Now Ann(E) = { x € N/ xE =0} is essential in N.

Again as Soc(N).E = 0, Soc(N) < Ann(E). Thus Soc(N) = Ann(E) , that is E is annihilated

by Soc(N). Again Zw(E) = {x € E/Ix=0,1 <, N} and we get E is weak singular.
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For if not for some xeE, VI <N, Ix # 0, that is SocN.x # 0,a contradiction.

By(i.) E is injective as an N-group and hence injective as an N/Soc(N)-group.

ii.=>i. Let L be a semi-simple weak singular N-group.

Then L can be regarded as N/ Soc(N)-group and hence injective as N/ Soc(N)-group by (ii).

So L is injective as N-group.

For near-ring N with identity and M unital N-group if for every right ideal U of N and
every N-homomorphism f: U — M, there exists an element m in M such that fla) = ma for

all ain U implies M is injective then we get the following results.

Propeosition 3. 4.24: @, E; of injective N-groups is injective if near-ring N is weakly

Noetherian.

Proof: Let N be weakly Noetherian, I be an ideal of Nandf: | — @ A E, .

Then since 1 is finitely generated, Imfis contained in ®¢E, for some finite subset Fc A.

So @E, is injective since finite direct sum is injective by theorem 3.3.7.

By theorem 4.1.9, as ®fE,, is injective then for every right ideal U of N and every N-
homomorphism f: U — ®zE,, there exists an element m in ©¢E, such that f(a) = ma for
all a e U. But m € @ 4 E, also. So for every right ideal U of N and every N-homomorphism
f: U — @ 4 Eg, there exists an element m in @ 4 E, such that f(a) =ma for all ain U.

Then ® 4 E, is injective.
Proposition 3.4.25: For any near-ring N the f‘ollowing conditions are equivalent:

i. N is an almost weakly Noetherian near-ring.

ii. N/I is weakly Noetherian for every essential left ideal I of N.
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ili.  Nhas A.C.C. on essential left ideals.
Moreover if Z (\N) = 0, N dgnr and every injective right N/K-group is injective as an N-
group for ideal K of N we get

iv. Direct sum of (countably many) weak singular injective left N-groups is

injective.

Again if Z (y\N) = 0 and every injective right N-group is injective as an N/K-group for
ideal K of N where SocN is pure we get

\2 Direct sum of (Countably many) injective hulls of simple weak singular left N-

groups is injective.

Proof: Equivalence between (i), (ii), (iii) is clear from above corollary 3.4.13, considering

N as N-group.

(i) = (iv). Let {Ei}ia be a family of weak singular left N-groups. Since Zy(E;) = {x€E; /
Ix = 0 for [ <N} = E; ,we get SocN.E; = 0. So each E; can be regarded as an N/Soc(N)-
groups. Since N/Soc(N) is weakly Noetherian, ®;.E; is injective as an N/Soc(N)-group by

proposition 3.4.24, hence @ E;is injective as an N-group.
(iv) =>(v). clear.
(v) =(). Proposition 3.4.17
If every injective right N/K-group is injective as an N-group we get the following results:
Theorem 3.4.26: For a dgnr near-ring N, then the following conditions are equivalent:
i. N is $%S,] -near-ring.
ii. N/S oc(N) is weakly Noetherian V. near-ring.

iii.  Nis GV-near-ring and direct sum of weak singular injective N-groups is

injective.
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iv. Nis GV-near-ring and N has A.C.C. on essential left ideals.

Proof: i.<ii. From theorem 3.4.23

il.=>iii. From equivalence between (i) and (ii) clearly N is a GV-near-ring.

N/ Soc(N) is weakly Noetherian.

Let {Ei} i be a family of weak singular left N- groups. Clearly each E, can be regarded

as an N/Soc(N)-groups.

Since N/Soc(N) is weakly Noetherian, so by proposition 3.4.24, @,(E; is injective as an

N/Soc(N)- group. So @,¢(E;is injective as an N-group.

iii.=i. is obvious.

Theorem 3.4.27: For a dgnr GV near-ring N direct sum of weak singular injective N-
groups is injective implies N has A.C.C. on essential left ideals.

Proof: Since (iii) is equivalent to (ii) in theorem 3.4.26, we can conclude that N has A.C.C.
on essential ideals.

Theorem 3.4.28: For a dgnr GV near-ring N if every injective right N/K-group is injective
as an N-group for ideal K of N and N has A.C.C. on essential left ideals then direct sum of
weak singular injective N-groups is injective.

Proof: From theorem 3.4.21, Z(N) = 0.

From proposition 3.4.25 direct sum of weak singular injective N-groups is injective.



